Answer:
Activation energy is the amount of energy required to convert the reactants into the activated complex (option B)
Explanation:
The activation energy is the minimum needed energy to make a reaction occurs. When the reaction occurs, the molecules of reactants joins together in a determined position, so when they bond all the molecules reactants, they make the activated complex. That's why we say, that the energy needed to make the molecules of reactants form the activated complex is finally the <em>activation energy</em>.
When the activated complex is formed, there is a few moment with all the molecules from reactants bonding together. By the end, they are separated so the products are been formed.
Acceleration is defined as velocity per unit time.


Here, a=acceleartion,
v=velocity=36 m/s
t=time=12 s



A car at rest ends accelerates for 12 seconds. After this time the car is going 36 m/s. So acceleration that is a=3 ms⁻².
Answer:Chemical reactions occur when chemical bonds between atoms are formed or broken. The substances that go into a chemical reaction are called the reactants, and the substances produced at the end of the reaction are known as the products.
Explanation:
Answer:
See explanation
Explanation:
I know that we usually associate the sp3 hybridization to the tetrahedral shape. This is common in molecules such as CH4. So it may sound somewhat strange that NH3 molecule has an sp3 hybridized nitrogen atom and a trigonal pyramidal geometry.
Let us recall that the central nitrogen atom in NH3 has a lone pair of electrons. These lone pairs causes more repulsion than bond pairs. As a result of the presence of this lone pair, the bond angle in the NH3 molecule is distorted away from the expected 109.7 degrees in tetrahedral geometry and the bonding groups are now arranged in a trigonal pyramidal geometry(with bond angle less than 109.7 degrees) to minimize electron pair repulsions.