1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
2 years ago
6

1. What is the volume of 0.900 moles of an ideal gas at 25.0° C and a pressure of 950.0 mm Hg?

Chemistry
2 answers:
ololo11 [35]2 years ago
6 0
<span>1. Using the ideal gas law, which states that PV = nRT, and remembering that absolute temperature must be used:
(950.0 mmHg)(V) = (0.900 moles)(R)(25.0 + 273.15 K)
The most convenient value of R is 0.08206 L-atm/mol-K, so we convert the pressure of 950.0 mmHg to atm by dividing by 760: 1.25 atm
(1.25 atm)(V) = (0.9)(0.08206)(298.15)
V = 17.6 L

2. Again using the ideal gas law, and converting temperature to Kelvin: 27 + 273.15 = 300.15 K
PV = nRT
P(50.0 L) = (2.50 moles)(0.08206 L-atm/mol-K)(300.15 K)
P = 1.23 atm
Then we multiply by 760 mmHg / 1 atm = 936 mmHg. This is the fourth of the choices.

3. If the complete solution has a mass of 170 grams, and 12.4 grams of it is the dissolved KBr, we simply have to divide the mass of solute (KBr) by the total mass of the solution: This gives us 12.4 grams / 170 grams = 0.0729. Multiplying by 100% gives 7.29% or approximately 7.3% KBr, which is the third of the choices.</span>
pochemuha2 years ago
4 0

1. The volume of the ideal gas is \boxed{{\text{17}}{\text{.6 L}}} .

2. The pressure of the ideal gas is \boxed{{\text{936 mm Hg}}} .

3. The concentration of the solution, expressed as mass percent is \boxed{{\text{7}}{\text{.3 \% }}} .

Further Explanation:

An ideal gas is a hypothetical gas that is composed of a large number of randomly moving particles that are supposed to have perfectly elastic collisions among themselves. It is just a theoretical concept and practically no such gas exists. But gases tend to behave almost ideally at a higher temperature and lower pressure.

Ideal gas law is the equation of state for any hypothetical gas. The expression for the ideal gas equation is as follows:

{\text{PV}} = {\text{nRT}}        .......(1)

Here,

P is the pressure of ideal gas.

V is the volume of ideal gas.

T is the absolute temperature of the ideal gas.

n is the number of moles of the ideal gas.

R is the universal gas constant.

1. Rearrange equation (1) to calculate the volume of the ideal gas.

{\text{V}}=\dfrac{{{\text{nRT}}}}{{\text{P}}}    ......(2)

The pressure of the ideal gas is 950 mm Hg.

The temperature of the ideal gas is {\text{25}}\;^\circ{\text{C}} .

The number of moles of the ideal gas is 0.9 mol.

The universal gas constant is 0.0821 L atm/K mol.

Substitute these values in equation (2).

\begin{aligned}{\text{V}}&=\frac{{\left( {{\text{0}}{\text{.9 mol}}} \right)\left( {0.0821{\text{ L atm/K mol}}} \right)\left( {25 + 27{\text{3}}{\text{.15}}}\right){\text{K}}}}{{\left( {950{\text{ mm Hg}}}\right)\left( {\frac{{{\text{1 atm}}}}{{760{\text{ mm Hg}}}}}\right)}}\\&= 17.624{\text{ L}}\\&\approx {\text{17}}{\text{.6 L}}\\\end{aligned}

Therefore the volume of the ideal gas is 17.6 L.

2. Rearrange equation (1) to calculate the pressure of ideal gas.

 {\text{P}} =\dfrac{{{\text{nRT}}}}{{\text{V}}}        ......(3)

The volume of the ideal gas is 50 L.

The temperature of the ideal gas is {\text{27}}\;^\circ {\text{C}} .

The number of moles of the ideal gas is 2.5 mol.

The universal gas constant is 0.0821 L atm/K mol

Substitute these values in equation (3).

\begin{aligned}{\text{P}}&= \frac{{\left( {{\text{2}}{\text{.5 mol}}} \right)\left( {0.0821{\text{ L atm/K mol}}} \right)\left( {27 + 27{\text{3}}{\text{.15}}} \right){\text{K}}}}{{{\text{50 L}}}}\\&= 1.2321{\text{ atm}}\\&\approx 1.232{\text{ atm}}\\\end{aligned}

The pressure is to be converted into mm Hg. The conversion factor for this is,

{\text{1 atm}} = {\text{760 mm Hg}}

So the pressure of ideal gas can be calculated as follows:  

\begin{aligned}{\text{P}} &= \left({{\text{1}}{\text{.232 atm}}}\right)\left( {\frac{{{\text{760 mm Hg}}}}{{{\text{1 atm}}}}}\right)\\&= 936.3{\text{2 mm Hg}} \\&\approx 93{\text{6 mm Hg}}\\\end{aligned}

Therefore the pressure of the ideal gas is 936 mm Hg.

3. The formula to calculate the mass percent of KBr is as follows:

{\text{Mass}}\;{\text{percent}}=\left( {\dfrac{{{\text{Mass of KBr}}}}{{{\text{Mass of solution}}}}}\right)\left( {100} \right)   ......(4)

The mass of KBr is 12.4 g.

The mass of the solution is 170 g.

Substitute these values in equation (4).

\begin{aligned}{\text{Mass}}\;{\text{percent}}&= \left( {\frac{{{\text{12}}{\text{.4 g}}}}{{{\text{170 g}}}}} \right)\left( {100} \right)\\&= 7.294\;\% \\&\approx 7.{\text{3 \% }}\\\end{aligned}

Therefore the concentration of the solution is 7.3 %.

Learn more:

1. Which statement is true for Boyle’s law: brainly.com/question/1158880

2. Calculation of volume of gas: brainly.com/question/3636135

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole Concept

Keywords: P, V, n, R, T, ideal gas, pressure, volume, 17.6 L, 936 mm Hg, 7.3 %, 0.9 mol, 950 mm Hg, 50 L, 2.5 mol, 12.4 g, 170 g, KBr

You might be interested in
Two species of frog mate in the same pond. One breeds in early summer and one in late summer. This is an example of what kind of
MatroZZZ [7]

Answer:

Pre-zygotic, temporal separation

Explanation:

Reproductive isolation mechanism is of two types:

  • Prezygotic mechanism
  • Postzygotic mechanism

Prezygotic mechanism isolation occurs before fertilization and helpful in preventing formation of fertile offspring.

In frog external fertilization occurs. In the external fertilization, eggs and sperms are released in water and fertilization occur outside the water.

Prezygotic isolating mechanisms may include behavioral isolation, temporal isolation, mechanical isolation, gametic isolation and habitat isolation.

Temporal separation in reproduction is the sexual activity in the same geographical range but in different periods.

Therefore, the given reproductive isolation is pre-zygotic, temporal separation.

4 0
3 years ago
What is the symbol for decimeter
Marysya12 [62]

Answer:

The symbol for decimeter is dm

Explanation:

No need for an explanation

5 0
2 years ago
Read 2 more answers
PLZZZZZZZ HELP MEEEEEE!!!!!!!!!!
nikitadnepr [17]

Answer:

Its Obviously Dinosaurs

Explanation: They died 65 million years ago

7 0
3 years ago
How many molecules of O2 will be required to produce 28.8 g of water?
Mrac [35]
I think 1.67 x 10^20
5 0
3 years ago
The Olympian swam 200 meters in 20 seconds. <br> 1) velocity<br> 2) acceleration<br> 3) speed
irakobra [83]

Answer: velocity

Explanation:

3 0
2 years ago
Read 2 more answers
Other questions:
  • Approximately how many moles of Al3+ are reduced when 0.1 faraday of charge passes through a cell during the production of Al? (
    15·1 answer
  • Can you give me a pic or explanation of amp structure
    9·2 answers
  • According to Arhennius, which of the following is a base? *
    10·1 answer
  • When two atoms combine by transferring electrons, it is a(n) _____ bond.
    12·2 answers
  • Name of the the following unsaturated Hydrocarbon​
    6·1 answer
  • Help! Please I’m in science
    11·2 answers
  • 1.What are two factors that are necessary for hurricane development?
    9·1 answer
  • Can someone help me PLEASE
    12·1 answer
  • Given the following equation: 2h20=2h2+02 how many grams of o2 are produced if 3.6 grams of h20 react?
    7·1 answer
  • When do you use the roman numerals when naming ionic compounds
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!