The closer you are to the ground the more accurate you'll be. That's why most snipers are in the "prone" position.
Answer:

Explanation:
We could use the following suvat equation:

where
s is the vertical displacement of the coin
v is its final velocity, when it hits the water
t is the time
g is the acceleration of gravity
Taking upward as positive direction, in this problem we have:
s = -1.2 m

And the coin reaches the water when
t = 1.3 s
Substituting these data, we can find v:

where the negative sign means the direction is downward.
Answer:
Explanation:
Let pressure at surface of earth be P Pa.
pressure at height of 8.1 km in air can be calculated as follows .
pressure due to column of air of 8.1 km height
= h d g , h is height , d is density of air and g is acceleration due to gravity
= 8.1 x 1000 x .87 x 9.8 = 6.9 x 10⁴ Pa .
pressure at the height of 8.1 km
= P - 6.9 x 10⁴ Pa
Pressure due to column of 16 m in the sea
= h d g
16 x 1000 x 9.8
= 15.68 x 10⁴ Pa .
Pressure at depth of 16m
= P + 15.68 x 10⁴
pressure difference between points at height of 8.1 km and pressure at point 16 m deep
= P + 15.68 x 10⁴ - P + 6.9 x 10⁴ Pa
= 22.58 x 10⁴ Pa .
The natural light display called aurora borealis is located in the northern
hemisphere.
There are two types of aurora which are called aurora borealis and aurora
australis. The aurora borealis is located in the Northern hemisphere while
the aurora australis is located in the Southern hemisphere.
They receive their energy through the interaction of charged particles
on the Sun and Earth to produce the light display. An example
of the interaction involves solar wind with atoms of the upper atmosphere.
Read more on brainly.com/question/20191244
Answer:
See below
Explanation:
Distance = 27 + 13 = 40 km
Displacement = 27 - 13 = 14 km