Answer:
F = 1.24*10^4 N
Explanation:
Given
Depth of the ship, h = 25 m
Density of water, ρ = 1.03*10^3 kg/m³
Diameter of the hatch, d = 0.25 m
Pressure of air, P(air) = 1 atm
Pressure of water =
P(w) = ρgh
P(w) = 1.03*10^3 * 9.8 * 25
P(w) = 2.52*10^5 N/m²
P(net) = P(w) + P(air) - P(air)
P(net) = P(w)
P(net) = 2.52*10^5 N/m²
Remember,
Pressure = Force / Area, so
Force = Area * Pressure
Area = πr² = πd²/4
Area = 3.142 * 0.25²/4
Area = 3.142 * 0.015625
Area = 0.0491 m²
Force = 0.0491 * 2.52*10^5
F = 12373 N
F = 1.24*10^4 N
Answer:
The answer is: True.
Explanation:
If free electrons or other substances could travel through the electrolyte, they would disrupt the chemical reaction. Whether they combine at anode or cathode, together hydrogen and oxygen form water, which drains from the cell. As long as a fuel cell is supplied with hydrogen and oxygen, it will generate electricity.
(Credit: Google)
Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,

Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?

a = -1.47 m/
(a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/
(since same friction force is applied)

s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Answer:
There isnt enough in your question to answer the question bro, like we need a picture or something bro.
Explanation: