Answer:
v = 0
Explanation:
This problem can be solved by taking into account:
- The equation for the calculation of the period in a spring-masss system
( 1 )
- The equation for the velocity of a simple harmonic motion
( 2 )
where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block
Hence

and by reeplacing it in ( 2 ):

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.
Answer:

Explanation:
Given that:
p = magnitude of charge on a proton = 
k = Boltzmann constant = 
r = distance between the two carbon nuclei = 1.00 nm = 
Since a carbon nucleus contains 6 protons.
So, charge on a carbon nucleus is 
We know that the electric potential energy between two charges q and Q separated by a distance r is given by:

So, the potential energy between the two nuclei of carbon is as below:

Hence, the energy stored between two nuclei of carbon is
.
It is called surface tension it is the elastic personality of some liquids as they pull together to take up as little surface area as possible. the water molecules would rather stay together than be pulled apart<span />
Kinetic energy = mass time squared speed divided by 2
W=mv^2/2 = 50*10*10/2 = 2500 J
The net force is determined is basically who is pushing harder in a specific direction.Like since there bith pushing in the same direction the net force is in the direction that they are pushing.