1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitrij [34]
3 years ago
13

Use phasor techniques to determine the impedance seen by the source given that R = 4 Ω, C = 12 μF, L = 6 mH and ω = 2000 rad/sec

. Then determine the current supplied by the source given that V = 12 <0o v. The equivalent impedance seen by the source is Z = ∠ o Ω. (Round the magnitude to three decimal places and the angle to two decimal places.) The current supplied by the source is I = ∠ o A. (Round the magnitude to three decimal places and the angle to two decimal places.)
Engineering
1 answer:
Zielflug [23.3K]3 years ago
7 0

Answer:

Z = 29.938Ω ∠22.04°

I = 2.494A

Explanation:

Impedance Z is defined as the total opposition to the flow of current in an AC circuit. In an R-L-C AC circuit, Impedance is expressed as shown:

Z² = R²+(Xl-Xc)²

Z = √R²+(Xl-Xc)²

R is the resistance = 4Ω

Xl is the inductive reactance = ωL

Xc is the capacitive reactance =

1/ωc

Given C = 12 μF, L = 6 mH and ω = 2000 rad/sec

Xl = 2000×6×10^-3

Xl = 12Ω

Xc = 1/2000×12×10^-6

Xc = 1/24000×10^-6

Xc = 1/0.024

Xc = 41.67Ω

Z = √4²+(12-41.67)²

Z = √16+880.31

Z = √896.31

Z = 29.938Ω (to 3dp)

θ = tan^-1(Xl-Xc)/R

θ = tan^-1(12-41.67)/12

θ = tan^-1(-29.67)/12

θ = tan^-1 -2.47

θ = -67.96°

θ = 90-67.96

θ = 22.04° (to 2dp)

To determine the current, we will use the relationship

V = IZ

I =V/Z

Given V = 12V

I = 29.93/12

I = 2.494A (3dp)

You might be interested in
A number 12 copper wire has a diameter of 2.053 mm. Calculate the resistance of a 37.0 m long piece of such wire.
Alinara [238K]

Answer:

R=1923Ω

Explanation:

Resistivity(R) of copper wire at 20 degrees Celsius is 1.72x10^-8Ωm.

Coil length(L) of the wire=37.0m

Cross-sectional area of the conductor or wire (A) = πr^2

A= π * (2.053/1000)/2=3.31*10^-6

To calculate for the resistance (R):

R=ρ*L/A

R=(1.72*10^8)*(37.0)/(3.31*10^-6)

R=1922.65Ω

Approximately, R=1923Ω

5 0
3 years ago
Thin film deposition is a process where: a)-elemental, alloy, or compound thin films are deposited onto a bulk substrate! b)-Pho
marshall27 [118]

Answer:

(A) elemental, alloy, or compound thin films are deposited on to a bulk substrate

Explanation:

In film deposition there is process of depositing of material in form of thin films whose size varies between the nano meters to micrometers onto a surface. The material can be a single element a alloy or a compound.

This technology is very useful in semiconductor industries, in solar panels in CD drives etc

so from above discussion it is clear that option (a) will be the correct answer

8 0
3 years ago
Help please its due today will mark you brainliest
Tems11 [23]

Answer:

launch- The first stage is ignited at launch and burns through the powered ascent until its propellants are exhausted. The first stage engine is then extinguished, the second stage separates from the first stage, and the second stage engine is ignited. The payload is carried atop the second stage into orbit

powered ascent-The first stage is ignited at launch and burns through the powered ascent until its propellants are exhausted. The first stage engine is then extinguished, the second stage separates from the first stage, and the second stage engine is ignited. The payload is carried atop the second stage into orbit

coasting flight-

When the rocket runs out of fuel, it enters a coasting flight. The vehicle slows down under the action of the weight and drag since there is no longer any thrust present. The rocket eventually reaches some maximum altitude which you can measure using some simple length and angle measurements and trigonometry.

ejection charge-At the end of the delay charge, an ejection charge is ignited which pressurizes the body tube, blows the nose cap off, and deploys the parachute. The rocket then begins a slow descent under parachute to a recovery. The forces at work here are the weight of the vehicle and the drag of the parachute.

slow decent- slow downs (i guess)

recovery-A recovery period is typically characterized by abnormally high levels of growth in real gross domestic product, employment, corporate profits, and other indicators. This is a turning point from contraction to expansion and often results in an increase in consumer confidence

Explanation:

6 0
4 years ago
A seamless pipe 800mm diameter contains a fluid under a pressure of 2N/mm2. If the permissible tensile stress is 100N/mm2, find
Bad White [126]

Answer:

8 mm

Explanation:

Given:

Diameter, D = 800 mm

Pressure, P = 2 N/mm²

Permissible tensile stress, σ = 100 N/mm²

Now,

for the pipes, we have the relation as:

\sigma=\frac{\textup{PD}}{\textup{2t}}

where, t is the thickness

on substituting the respective values, we get

100=\frac{\textup{2\times800}}{\textup{2t}}

or

t = 8 mm

Hence, the minimum thickness of pipe is 8 mm

3 0
3 years ago
For which of 'water' flow velocities at 200C can we assume that the flow is incompressible ? a.1000 km per hour b. 500 km per ho
ad-work [718]

Answer:d

Explanation:

Given

Temperature=200^{\circ}\approc 473 K

Also \gamma for air=1.4

R=287 J/kg

Flow will be In-compressible when Mach no.<0.32

Mach no.=\frac{V}{\sqrt{\gamma RT}}

(a)1000 km/h\approx 277.78 m/s

Mach no.=\frac{277.78}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.63

(b)500 km/h\approx 138.89 m/s

Mach no.=\frac{138.89}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.31

(c)2000 km/h\approx 555.55 m/s

Mach no.=\frac{555.55}{\sqrt{1.4\times 287\times 473}}

Mach no.=1.27

(d)200 km/h\approx 55.55 m/s

Mach no.=\frac{55.55}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.127

From above results it is clear that for Flow at velocity 200 km/h ,it will be incompressible.

5 0
3 years ago
Other questions:
  • For the R function shown below(Attachment):
    5·1 answer
  • Velocity and temperature profiles for laminar flow in a tube of radius ro = 10 mm have the form: u(r) = 0.15[1 − (r/ro ) 2 ] T(r
    11·1 answer
  • During a long run a very well-trained dog can use up to 1000 ‘cal’/hour (Note: Food calories differ by a factor of one thousand
    14·1 answer
  • Anne-Marie Cole runs the sales division for a local auto insurance firm. One of her key duties is to calculate her company's mar
    11·2 answers
  • Fluorescent troffers are a type of _ lighting fixture
    6·1 answer
  • Determine the reactor volume (assume a CSTR activated sludge aerobic reactor at steady state) required to treat 5 MGD of domesti
    5·1 answer
  • Write a Nested While Loop that will increment the '*' from 1 to 10.
    6·1 answer
  • A golfer and her caddy see lightning nearby. the golfer is about to take his shot with a metal club, while her caddy is holding
    12·1 answer
  • Problema sobre programacion orientada a objetos!!
    14·1 answer
  • A 75-hp motor that has an efficiency of 91.0% is worn-out and is replaced by a motor that has a high efficiency 75-hp motor that
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!