1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Troyanec [42]
3 years ago
8

When determining risk, it is necessary to estimate all routes of exposure in order to determine a total dose (or CDI). Recognizi

ng this, estimate the total chronic daily intake of toluene from exposure to a city water supply that contains toluene at a concentration equal to the drinking water standard of 1 mg/L over a period of 10 years. Assume the exposed individual is an adult female that is exposed to the chemical via drinking water and inhaling gaseous toluene released while she showers. Use the given parameters to calculate the CDI for water consumption. For inhalation, assume the woman takes a 15-minute shower every day. Assume the average air concentration of toluene during the shower is 1 μg/m3 and that she breathes at the adult rate of 20 m3/day.
Engineering
1 answer:
Allushta [10]3 years ago
7 0

Answer:

The following are the solution to this question:

Explanation:

The Formula for calculating CDI:

\bold{CDI = \frac{C \times CR \times EF \times ED}{BW \times AT}}

_{where} \\ CDI = \text{Chronic daily Intake rate}  (\frac{mg}{kg-day})} \\\\\text{C = concentration of Toluene}\\\\\text{CR = contact rate} \frac{L}{day}\\\\\text{EF = Exposure frequency} \frac{days}{year}\\\\\text{ED = Exposure duration (in years)} = 10 \ \ years\\\\\text{BW = Body weight (kg) = 70 kg for adult}\\\\ \text{AT = average period of exposure (days) }

calculating the value of AT:

=  365 \frac{days}{year}  \times  70 \ year  \\\\ = 25550 \ days

 calculating the value of Intake based drinking:

C = 1 \ \frac{mg}{L}

CR = 2 \frac{L}{day} Considering that adult females eat 2 L of water a day,

EF = 350 \frac{days}{year} for drink

calculating the CDI value:

\to CDI = \frac{(1 \times 2 \times 350 \times 10)}{(70 \times  25550)}\\\\

             = \frac{(2 \times 3500)}{(70 \times  25550)}\\\\ = \frac{(7000)}{(70 \times  25550)}\\\\ = \frac{(100)}{(25550)}\\\\=0.00391 \frac{mg}{ kg-day}

Centered on inhalation, intake:

C = \frac{1 \mu g} { m^3} \ \ \  or \ \ \ \ 0.001  \ \ \frac{mg}{m^3}\\\\CR = 20  \frac{m^3}{day}\\\\EF = 15 \frac{min}{day}  \ \ or\ \  5475 \frac{min}{yr} \ \ \  or \ \  3.80 \frac{days}{year}\\

calculating the value of CDI:

\to CDI = \frac{(0.001 \times 20 \times 3.80 \times 10)}{(70 \times 25550)}

             = \frac{(0.76)}{(1788500)}\\\\= 4.24 \times 10^{-7} \ \ \frac{mg}{kg-day}

You might be interested in
a sprue is 12 in long and has a diameter of 5 in at the top. The molten metal level in the pouring basing is taken to be 3 in fr
vampirchik [111]

Answer:

See explaination

Explanation:

We can describe Aspiration Effect as a phenomenon of providing an allowance for the release of air from the mold cavity during the metal pouring.

See the attached file for detailed solution of the given problem.

8 0
2 years ago
Read 2 more answers
A 3.52 kg steel ball is tossed upward from a height of 6.93 meters above the floor with a vertical velocity of 2.99 m/s. What is
Dafna1 [17]

Answer : The final velocity of the ball is, 12.03 m/s

Explanation :

By the 3rd equation of motion,

v^2-u^2=2as

where,

s = distance covered by the object = 6.93 m

u = initial velocity  = 2.99 m/s

v = final velocity = ?

a = acceleration = 9.8m/s^2

Now put all the given values in the above equation, we get the final velocity of the ball.

v^2-(2.99m/s)^2=2\times (9.8m/s^2)\times (6.93m)

v=12.03m/s

Thus, the final velocity of the ball is, 12.03 m/s

7 0
3 years ago
Find: factor of safety (n)for point A and B by using both MSS and DE (you can neglect shear stress due to shear force and also n
gladu [14]

Answer:

Hello your question is incomplete attached below is the complete question

Answer : Factor of safety for point A :

i) using MSS

(Fos)MSS =  3.22

ii) using DE

(Fos)DE = 3.27

Factor of safety for point B

i) using MSS

(Fos)MSS =  3.04

ii) using DE

(Fos)DE = 3.604

Explanation:

Factor of safety for point A :

i) using MSS

(Fos)MSS =  3.22

ii) using DE

(Fos)DE = 3.27

Factor of safety for point B

i) using MSS

(Fos)MSS =  3.04

ii) using DE

(Fos)DE = 3.604

Attached below is the detailed solution

8 0
3 years ago
What oil specification is used to express the thickness (viscosity) of the oil?​
Marianna [84]

Answer:

Viscosity is notated using the common classification “XW-XX”. The number preceding the “W” (winter) rates the oil's flow (viscosity) at zero degrees Fahrenheit (-17.8 degrees Celsius). The lower the number, the less the oil thickens in cold weather.

7 0
2 years ago
Can i have answer of this question please?
cestrela7 [59]

uh its a tough one mate

3 0
2 years ago
Other questions:
  • What is shown in the above figure?
    11·2 answers
  • Methane gas at 25°C, 1 atm enters a reactor operating at steady-state and burns with 80% theoretical air entering at 227°C, 1 at
    10·1 answer
  • Is the ASUS ROG Strix B450-F Gaming amd ryzen 5 3600 ready?
    7·2 answers
  • A satellite is launched 600 km from the surface of the earth, with an initial velocity of 8333.3 m./s, acting parallel to the ta
    14·1 answer
  • A common way of measuring the thermal conductivity of a material is to sandwich an electric thermofoil heater between two identi
    9·1 answer
  • How much work is performed if a 400 lb weight is lifted 10 ft ?
    8·1 answer
  • Please help! timed test. This about electrical control. Please be serious.
    15·1 answer
  • A small distiller evaporates 10 L of water per half hour. Alloy tubing exposed to the air serves a condenser to recover steam. T
    14·1 answer
  • Refrigerant-134a enters the expansion valve of a refrigeration system at 120 psia as a saturated liquid and leaves at 20 psia. D
    15·1 answer
  • Work to be performed can come from the work package level of the work breakdown structure as well as other sources. Which of the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!