The watts that are consumed is 80 watts.
<h3>What power factor?</h3>
The term power factor has to do with the measure of the efficiency of the use of energy. Recall that power is defined as the rate of doing work. The magnitude of the power factor shows the extent to which the power is used.
Now, to obtain the watts are consumed in a circuit having a power factor of 0. 2 if the input is 100 vac at 4 amperes we have; V × I × PF = 100V × 4A × 0.2 = 80 watts.
Learn more about power factor:brainly.com/question/10634193
#SPJ4
During some actual expansion and compression processes in piston-cylinder devices, the gases have been are the P1= P2.
<h3>What is the pressure?</h3>
Pressure is something that has the pressure that is physical and that causes the pressure is piston-cylinder devices.
During a few real enlargements and compression procedures in piston-cylinder devices, the gases were located to meet the connection PV n = C, wherein n and C are constants.
Read more about the pressure :
brainly.com/question/25736513
#SPJ1
This question is incomplete, the complete question is;
Determine the design moment strength (ϕMn) for a W21x73 steel beam with a simple span of 18 ft when lateral bracing for the compression flange is provided at the ends only (i.e., Lb = 18 ft). Report the result in kip-ft.
Use Fy=50 ksi and assume Cb=1.0 (if needed).
Answer: the design moment strength for the W21x73 steel beam is 566.25 f-ft
Explanation:
Given that;
section W 21 x 73 steel beam;
now from the steel table table for this section;
Zx = Sx = 151 in³
also given that; fy = 50 ksi and Cb = 1.0
QMn = 0.9 × Fy × Zx
so we substitute
QMn = 0.9 × 50 × 151
QMn = 6795 k-inch
we know that;
12inch equals 1 foot
so
QMn = 6795 k-inch / 12
QMn = 566.25 f-ft
Therefore the design moment strength for the W21x73 steel beam is 566.25 f-ft
Answer:
<u><em>both, one</em></u>
Explanation:
<em>Alternating current flows in both directions and direct current flows in one direction.</em>
<em></em>
<em>Hope it helps.</em>
<em>;)</em>
<em><3</em>
Answer:
0.19s
Explanation:
Queueing delay is the time a job waits in a queue before it can be executed. it is the difference in time betwen when the packet data reaches it destination and the time when it was executed.
Queueing delay =(N-1) L /2R
where N = no of packet =93
L = size of packet = 4MB
R = bandwidth = 1.4Gbps = 1×10⁹ bps
4 MB = 4194304 Bytes
(93 - 1)4194304 / 2× 10⁹
queueing delay =192937984 ×10⁻⁹
=0.19s