Nobelium discovered in Berkeley California
The equilibrium constant k is actually the ratio of the
concentration of the products over the concentration of reactants at equilibrium. So if the
concentration of products < concentration of reactants, therefore the
constant k will be small. But if the concentration of products >
concentration of reactants, the constant k will be large. In this case the
value is too small (x10^-19), therefore we can say that the reaction favors the
reactant side:
the equilibrium lies far to the left
They are made up of particles that are arranged in a repeating pattern.
Answer:
1.552 moles
Explanation:
First, we'll begin by writing a balanced equation for the reaction showing how C8H18 is burn in air to produce CO2.
This is illustrated below:
2C8H18 + 25O2 -> 16CO2 + 18H2O
Next, let us calculate the number of mole of C8H18 present in 22.1g of C8H18. This is illustrated below:
Molar Mass of C8H18 = (12x8) + (18x1) = 96 + 18 = 114g/mol
Mass of C8H18 = 22.1g
Mole of C8H18 =..?
Number of mole = Mass /Molar Mass
Mole of C8H18 = 22.1/144
Mole of C8H18 = 0.194 mole
From the balanced equation above,
2 moles of C8H18 produced 16 moles of CO2.
Therefore, 0.194 mole of C8H18 will produce = (0.194x16)/2 = 1.552 moles of CO2.
Therefore, 1.552 moles of CO2 are emitted into the atmosphere when 22.1 g C8H18 is burned