1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANTONII [103]
3 years ago
8

The heat required to raise the temperature of m (kg) of a liquid from T1 to T2 at constant pressure is Z T2CpT dT (1) In high sc

hool and in first-year college physics courses, the formula is usually given asQ ΔH m Q mCp ΔT mCpT2 ␣T1 (2)T1(a) What assumption about Cp is required to go from Equation 1 to Equation 2? (b) The heat capacity (Cp) of liquid n-hexane is measured in a bomb calorimeter. A small reaction flask (the bomb) is placed in a well-insulated vessel containing 2.00L of liquid n–C6H14 at T 300 K. A combustion reaction known to release 16.73 kJ of heat takes place in the bomb, and the subsequent temperature rise of the system contents is measured and found to be 3.10 K. In a separate experiment, it is found that 6.14kJ of heat is required to raise the temperature of everything in the system except the hexane by 3.10 K. Use these data to estimate Cp[kJ/(mol K)] for liquid n-hexane at T 300 K, assuming that the condition required for the validity ofEquation 2 is satisfied. Compare your result with a tabulated value.
Engineering
1 answer:
a_sh-v [17]3 years ago
6 0

Answer:

(a)

<em>d</em>Q = m<em>d</em>q

<em>d</em>q = C_p<em>d</em>T

q = \int\limits^{T_2}_{T_1} {C_p} \, dT   = C_p (T₂ - T₁)

From the above equations, the underlying assumption is that  C_p remains constant with change in temperature.

(b)

Given;

V = 2L

T₁ = 300 K

Q₁ = 16.73 KJ    ,   Q₂ = 6.14 KJ

ΔT = 3.10 K       ,   ΔT₂ = 3.10 K  for calorimeter

Let C_{cal} be heat constant of calorimeter

Q₂ = C_{cal} ΔT

Heat absorbed by n-C₆H₁₄ = Q₁ - Q₂

Q₁ - Q₂ = m C_p ΔT

number of moles of n-C₆H₁₄, n = m/M

ρ = 650 kg/m³  at 300 K

M = 86.178 g/mol

m = ρv = 650 (2x10⁻³) = 1.3 kg

n = m/M => 1.3 / 0.086178 = 15.085 moles

Q₁ - Q₂ = m C_p' ΔT

C_p = (16.73 - 6.14) / (15.085 x 3.10)

C_p = 0.22646 KJ mol⁻¹ k⁻¹

You might be interested in
The loneliest people are to kindest
valkas [14]

Answer:

The most damaged people are the wisest is a fact

Explanation:

5 0
3 years ago
Read 2 more answers
W10L1-Show It: Pythagorean Theorem<br> Calculate the total material in the picture.<br> 4<br> 3
Fantom [35]

Answer:

35

Explanation: I really dont even know, I just used up all my tries on it and got it wrong on every other thing i chose. So it's 35 i believe cause its the only answer i didnt choose.

7 0
3 years ago
Which best explains Susan B Anthony purpose in her speech “Women’s rights to the suffrage”
Furkat [3]

Answer:

She wrote and delivered a speech in 1873, which came to be known as the “Women's Rights to the Suffrage” speech. In her address, she lets the audience know of her “crime” of voting. She reminds the listener that the Constitution of the United States says “we the people” and does not exclude women as people

6 0
3 years ago
Read 2 more answers
The drag coefficient of a car at the design conditions of 1 atm, 25°C, and 90 km/h is to be determined experimentally in a large
SIZIF [17.4K]

Answer: 0.288

Explanation:

Given

Pressure of the car, P = 1 atm

Temperature of the car, T = 25° C

Speed of the car, v = 90 km/h = 90*1000/3600 = 25 m/s

Height of the car, h = 1.25 m

Width of the car, b = 1.65 m

Force acting on the far, F = 220 N

Drag coefficient, C(d) = ?

Using our table A-9, we can trace that the density of air ρ, at the given temperature and pressure of 25 °C and 1 atm, is 1.184 kg/m³

Area = h *b

Area = 1.25 * 1.65

Area = 2.0625 m²

Now we solve for the drag coefficient using the formula

C(d) = F / (1/2 * ρ * A * v²)

C(d) = 220 / (0.5 * 1.184 * 2.0625 * 25²)

C(d) = 220 / (1.221 * 625)

C(d) = 220 / 763.125

C(d) = 0.288

Therefore, the drag coefficient is 0.288

3 0
2 years ago
Determine the work done by an engine shaft rotating at 2500 rpm delivering an output torque of 4.5 N.m over a period of 30 secon
balu736 [363]

Answer:

work done= 2.12 kJ

Explanation:

Given

N=2500 rpm

T=4.5 N.m

Period ,t= 30 s

torque =\frac{power}{2\pi N}

power=2\pi N\times T

P=2\times \pi \times2500 \times 4.5

P=70,685W

P=70.685 KW

power=\frac{work done}{time}

work done = power * time

                  = 70.685*30=2120.55J

                  = 2.12 kJ

7 0
3 years ago
Other questions:
  • Consider a steam turbine, with inflow at 500oC and 7.9 MPa. The machine has a total-to-static efficiency ofηts=0.91, and the pre
    14·1 answer
  • A pump is used to transport water from a reservoir at one elevation to another reservoir at a higher elevation. If the elevation
    5·1 answer
  • A water tower that is 90 ft high provides water to a residential subdivision. The water main from the tower to the subdivision i
    10·1 answer
  • A 0.50 m3 drum was filled with 0.49 m3 of liquid water at 25oC and the remaining volume was water vapor without any air. The dru
    15·1 answer
  • Demonstreaza in 20 de propoziti ca snoava pacala si zarzarele boerului e o snoava
    12·1 answer
  • 1. Which of these materials is the strongest?
    12·1 answer
  • What’s the answer???
    9·1 answer
  • I need to solve for d
    11·2 answers
  • Subject : SCIENCE
    12·1 answer
  • What is an advantage of a nuclear-fission reactor?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!