Answer:
a) The additional time required for the truck to stop is <u>8.5 seconds</u>
b) The additional distance traveled by the truck is <u>230.05 ft</u>
Explanation:
Since the acceleration is constant, the average speed is:
(final speed - initial speed) / 2 = 0.75 v0
Since travelling at this speed for 8.5 seconds causes the vehicle to travel 690 ft, we can solve for v0:
0.75v0 * 8.5 = 690
v0 = 108.24 ft/s
The speed after 8.5 seconds is: 108.24 / 2 = 54.12 ft/s
We can now use the following equation to solve for acceleration:


a = -6.367 m/s^2
Additional time taken to decelerate: 54.12/6.367 = 8.5 seconds
Total distance traveled:

0 - 108.24^2 = 2 * (-6.367) * s
solving for s we get total distance traveled = 920.05 ft
Additional Distance Traveled: 920.05 - 690 = 230.05 ft
Answer:
I = 8.3 Amp
potential drop = 83 V
Explanation:
Power = 100 KW
V = 12,000 V
R = 10 ohms
a)
Calculate current I in each wire:
P = I*V
I = P / V
I = 100 / 12 = 8.333 A
b)
Calculate potential drop in each wire:
V = I*R
V = (8.3) * (10)
V = 83 V
Answer:
The answer is "
"
Explanation:
Given data:
Initial temperature of tank 
Initial pressure of tank
Diameter of throat
Mach number at exit 
In point a:
calculating the throat area:


Since, the Mach number at throat is approximately half the Mach number at exit.
Calculate the Mach number at throat.

Calculate the exit area using isentropic flow equation.

Here:
is the specific heat ratio. Substitute the values in above equation.

exit diameter is 3.74 cm
In point b:
Calculate the temperature at throat.

Calculate the velocity at exit.
Here: R is the gas constant.

Calculate the density of air at inlet

Calculate the density of air at throat using isentropic flow equation.

Calculate the mass flow rate.

Answer / Explanation:
Regarding α and β Particles in Windowless Counter, the range of α particles is lower than β particles. Alpha particles typically have range less than the dimensions of the gas chamber so that proportional counters are able to easily record. Hence, with almost 100% efficiency, each particle which enters the so called active volume.
Then, since the pulse height spectra depends on the number of ion pairs which have formed, an aplha particle with higher energy creates more ion pairs in the chamber. However, beta particle range usually exceeds the dimensions of the chamber and therefore most of the betas hit the walls where they deposit energy. Then, fewer ion pairs are formed because very few β’s give their energy to the bulk gas.