Answer: 
Explanation:
Given
Capacitance 
Resistance 
Inductance 
In LCR circuit, current is maximum at resonance frequency i.e.

Insert the values

Also, frequency is given by


6b: impulse is change in momentum. Change in momentum p=m[v(final)-v(initial). Final velocity is zero and initial velocity is the one you calculated before impact: -15.7 since it’s going down. Now plug in numbers and you get 78.5 in the upward direction.
6c: change in momentum p=Ft. we already calculated change in momentum. So plug it into equation and solve for t. 78.5/655= 0.119 s
Apply the same idea for question 7. Hope this helped
Answer:
Wc = 7.84 weight of crown
Ww = 7.84 - 6.86 = .98 weight of water displaced
Density = 7.84 / .98 = 8 crown is 8 X that of water
Since gold has a density of 19.3 that of water the crown is certainly not 100 percent (if any) gold
Answer:
The final velocity of the second player is 6.1 m/s.
Explanation:
The final velocity of the second player can be calculated by conservation of linear momentum (p):
(1)
Where:
: is the mass of the first football player = 110 kg
: is the mass of the second football player = 90 kg
: is the initial velocity of the first football player = 5.0 m/s
: is the initial velocity of the second football player = 0 (he is at rest)
: is the final velocity of the first football player = 0 (he stops after the impact)
: is the final velocity of the second football player =?
By solving equation (1) for
we have:


Therefore, the final velocity of the second player is 6.1 m/s.
I hope it helps you!
Answer:
.
Explanation:
Since no external force is acting on the system.
Therefore, Total energy remains constant before and after.
So, Total energy of system= energy due to potential applied+kinetic energy

(Here v=velocity ,V=potential ,q=charge and m=mass).
Putting values .
We get,
.
At point B charged particle is moving faster as compared to point A.
Hence, it is the required solution.