Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
It makes calculations with very large and small numbers easier.
Scientific notation is a system used in order to It makes calculations with very large and small numbers easier. It is useful as it allows very large number that would take a lot of space to write otherwise, and it allows them to be calculated easier.
for example is a incredible large number, but written in this form is immediately understandable and useful for calculation.
The fluids that have no resistance or zero resistance to internal friction are known as non- viscous fluids. • The fluid which has more resistance to flow is called viscous fluid. Viscosity is a property of a fluid, which is a degree of the amount of resistance between the fluid layers.