Answer:
The ratio of the momentum imparted to gun #1 to that imparted to gun #2 is equal to 2 : 1
Explanation:
Detailed explanation and calculation is shown in the image below
Momentum is conserved in a collision. Momentum is mass*velocity, so you can find your answer by calculating initial and final momentums and setting them equal to each other.
15kg * 3.50 m/s + 9kg * 2.35 m/s = 73.65 kg m/s
73.65 = 9 * 2.8 + 15x
solve for x
x= 3.23
The final velocity is 3.23 m/s
Answer:
7.65x10^3 m/s
Explanation:
The computation of the satellite's orbital speed is shown below:
Given that
Earth mass, M_e = 5.97 × 10^24 kg
Gravitational constant, G = 6.67 × 10^-11 N·m^2/kg
Orbital radius, r = 6.80 × 10^6m
Based on the above information
the satellite's orbital speed is
V_o = √GM_e ÷ √r
= √6.67 × 10^-11 × 5.97 × 10^24 ÷ √6.80 × 10^6
= 7.65x10^3 m/s
' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.
That's all the physics we need to know to answer this question.
The rest is just arithmetic.
(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)
= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)
= 51,840,000 joules
__________________________________
Wait a minute ! Hold up ! Hee haw ! Whoa !
Excuse me. That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's
(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)
= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)
= 14.4 kW·hour
Rounded to the nearest whole number:
14 kWh
Answer:
d
a balanced force acted on it and propelled it to 4,000 km/hr
Explanation:
For the neutrons star which is moving in outer space at 4,000 km/hr, it could only be possible as a result of the balanced force which had already acted on it. <em>This is based on newton's law of motion which states that 'To every action, there is equal and opposite reaction'. </em>