Answer:
75.5g
Explanation:
From the ionic equation, we can write

next we find the number of charge
Note Q=it
for i=8.5A, t=3.75 to secs 3.75*60*60=13500secs
hence

Since one faraday represent one mole of electron which equal 96500C
Hence the number of mole produced by 114750C is
114750/96500=1.2mol
The mass of copper produced is

Hence the amount of copper produced is 75.5g
When 2 waves interefere (or collide with eachother), it usually affects the crest of the wave. If both waves collide with both crests, it will create an amplified crest, and the waves will pass through eachother afterwards. If a trough of a wave meets a crest, it will cause the crest to be lowered shortly before both continue on.
Concentrated solar power facilities are solar power—generating facilities that generate electricity at large centralized facilities and transmit that power to homes and businesses through the electric grid .
<h3>What is solar power?</h3>
Solar power refer to electric power or electricity that is generated from sun rays or radiations while using solar panels and other technologies.
Therefore, Concentrated solar power facilities solar power—generating facilities that generate electricity at large centralized facilities and transmit that power to homes and businesses through the electric grid.
Learn more about solar power below
brainly.com/question/17711999
#SPJ12
Answer:
The final velocity of the object is 330 m/s.
Explanation:
To solve this problem, we first must find the acceleration of the object. We can do this using Newton's Second Law, given by the following equation:
F = ma
If we plug in the values that we are given in the problem, we get:
42 = 7 (a)
To solve for a, we simply divide both sides of the equation by 7.
42/7 = 7a/7
a = 6 m/s^2
Next, we should write out all of the information we have and what we are looking for.
a = 6 m/s^2
v1 = 0 m/s
t = 55 s
v2 = ?
We can use a kinematic equation to solve this problem. We should use:
v2 = v1 + at
If we plug in the values listed above, we should get:
v2 = 0 + (6)(55)
Next, we should solve the problem by performing the multiplication on the right side of the equation.
v2 = 330 m/s
Therefore, the final velocity reached by the object is 330 m/s.
Hope this helps!