Answer:
c. 0.816
Explanation:
Let the mass of car be 'm' and coefficient of static friction be 'μ'.
Given:
Speed of the car (v) = 40.0 m/s
Radius of the curve (R) = 200 m
As the car is making a circular turn, the force acting on it is centripetal force which is given as:
Centripetal force is, 
The frictional force is given as:
Friction = Normal force × Coefficient of static friction

As there is no vertical motion, therefore,
. So,

Now, the centripetal force is provided by the frictional force. Therefore,
Frictional force = Centripetal force

Plug in the given values and solve for 'μ'. This gives,

Therefore, option (c) is correct.
The water creates less friction between your foot and the ground
<span>Kinetic energy because it is taking the students to school.</span>
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).
Larger stars have a higher amount of fuel in order to keep the process of nuclear fusion going.