2-bromo-3,4-dimethylpentane is combined with t-butoxide. The product of this reaction is 3,4 dimethyl - 1- pentene.
The reaction of 2-bromo-3,4-dimethylpentane is combined with t-butoxide forms 2 alkene in the elimination reaction due to steric hindrance. The least stable alkene 3,4 dimethyl - 1- pentene is easy to make. the t-butoxide is (CH₃)₃CO⁻. The reaction involves in this reaction is E2 elimination reaction. This reaction involves the one step reaction. The product will also form that is 3,4 dimethyl - 2 - pentene. so the reaction involve Elimination reaction and the product due to steric hindrance is 3,4 dimethyl - 1- pentene
Thus, 2-bromo-3,4-dimethylpentane is combined with t-butoxide. The product of this reaction is 3,4 dimethyl - 1- pentene.
To learn more about t-butoxide here
brainly.com/question/12303978
#SPJ4
Answer:
Natural resources are naturally formed of course(wood copper fruits) and they are not distributed evenly due to competition of getting them and the prices of the resources
Explanation:
Money so i can get a nice body with the money hahah
Answer:
Part A = The mass of sulfur is 6.228 grams
Part B = The mass of 1 silver atom is 1.79 * 10^-22 grams
Explanation:
Part A
Step 1: Data given
A mixture of carbon and sulfur has a mass of 9.0 g
Mass of the product = 27.1 grams
X = mass carbon
Y = mass sulfur
x + y = 9.0 grams
x = 9.0 - y
x(molar mass CO2/atomic mass C) + y(molar mass SO2/atomic mass S) = 22.6
(9 - y)*(44.01/12.01) + y(64.07/32.07)
(9-y)(3.664) + y(1.998)
32.976 - 3.664y + 1.998y = 22.6
-1.666y = -10.376
y = 6.228 = mass sulfur
x = 9.0 - 6.228 = 2.772 grams = mass C
The mass of sulfur is 6.228 grams
Part B
Calculate the mass, in grams, of a single silver atom (mAg = 107.87 amu ).
Calculate moles of 1 silver atom
Moles = 1/ 6.022*10^23
Moles = 1.66*10^-24 moles
Mass = moles * molar mass
Mass = 1.66*10 ^-24 moles *107.87
Mass = 1.79 * 10^-22 grams
The mass of 1 silver atom is 1.79 * 10^-22 grams
Answer:
23.8g
Explanation :
Convert 2.0M into mol using mol= concentration x volume
2.0M x 0.1L (convert 100mL to L since the units for M is mol/L)
= 0.2 mol
We can now find grams by using the molar mass of KBr
=119.023 g/mol (Found online) webqc.org
but can be be calculated by using the molecular weight of K and Br found on the periodic table
We can now calculate the grams by using grams=mol x molar mass
119.023g/mol x 0.2mol
= 23.8046 g
=23.8g (rounded to 1decimal place)