V = I · R
Voltage = (current) · (Resistance)
Voltage = (250 A) · (2.09 x 10⁴)
Voltage = 5,225,000 volts .
I may be out of line here, but I'm pretty sure
that the resistance is 2.09 x 10⁻⁴ .
Then
Voltage = 0.05225 volt (not 5 million and something)
Answer:
The time that will pass between the feeling and hearing the explosion is 2,86 secs
Explanation:
First, let's calculate the time that the wave takes to travel until the actors feel the explosion:

Now, the time that pass while the actors hear the sound is:
<em>(Remember that the sound speed in the air is 340 m/s on average)</em>

So, the time between the feeling and hearing is 3,23 - 0,37 = 2,86 secs
True it was thought of as an advantage
Answer:
a. FALSE
b. FALSE
c. TRUTH
d. FALSE
e. FALSE
Explanation:
To determine which statements are truth or false you focus in the following formula, for the electric potential generated by a conducting sphere:
inside the sphere
for r > R (outside the sphere)
R: radius of the sphere
ε0: dielectric permittivity of vacuum
Q: charge of the sphere
As you can notice, inside the sphere the potential is constant. Inside the sphere, the potential is the same. Outside the surface the potential decreases as 1/r, being r the distance to the center of the sphere.
Hence, you can conclude:
a. The potential at the center of the sphere is zero. FALSE
b.The potential is lowest, but not zero, at the center of the sphere. FALSE
c. The potential at the center of the sphere is the same as the potential at the surface. TRUTH
d. The potential at the center is the same as the potential at infinity. FALSE
e. The potential at the surface is higher than the potential at the center. FALSE