Answer : The vapor pressure of propane at
is 17.73 atm.
Explanation :
The Clausius- Clapeyron equation is :
![\ln (\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}\times (\frac{1}{T_1}-\frac{1}{T_2})](https://tex.z-dn.net/?f=%5Cln%20%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5Ctimes%20%28%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%29)
where,
= vapor pressure of propane at
= ?
= vapor pressure of propane at normal boiling point = 1 atm
= temperature of propane = ![25.0^oC=273+25.0=298.0K](https://tex.z-dn.net/?f=25.0%5EoC%3D273%2B25.0%3D298.0K)
= normal boiling point of propane = ![-42.04^oC=230.96K](https://tex.z-dn.net/?f=-42.04%5EoC%3D230.96K)
= heat of vaporization = 24.54 kJ/mole = 24540 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:
![\ln (\frac{1atm}{P_1})=\frac{24540J/mole}{8.314J/K.mole}\times (\frac{1}{298.0K}-\frac{1}{230.96K})](https://tex.z-dn.net/?f=%5Cln%20%28%5Cfrac%7B1atm%7D%7BP_1%7D%29%3D%5Cfrac%7B24540J%2Fmole%7D%7B8.314J%2FK.mole%7D%5Ctimes%20%28%5Cfrac%7B1%7D%7B298.0K%7D-%5Cfrac%7B1%7D%7B230.96K%7D%29)
![P_1=17.73atm](https://tex.z-dn.net/?f=P_1%3D17.73atm)
Hence, the vapor pressure of propane at
is 17.73 atm.