Answer:
Greater
Greater
Explanation:
The amplitude of a wave is the height of the wave or the vertical displacement of the wave motion. We determine a wave amplitude usually by looking at the graph of the wave.
Amplitude is directly proportional to the energy of a wave. The higher the amplitude of a wave, the more its energy.
Frequency is the number of waves that passes a point at a particular instance of time. It is also directly proportional to the energy carried by a wave. The higher the frequency of a wave, the greater its energy.
Hi!
Answer:
The change in temperature.
Explanation:
Snow forms at 0 °C, when water vapor converts directly into solid ice crystals. Sleet forms when raindrops fall through a layer of air colder than 0 °C. This means that from the time it was snowing to the time it started sleeting the air has gotten warmer but one layer of air stayed cold, hence the formation of sleet. Freezing rain is rain that freezes when it hits a cold surface. This means that from the time it was sleeting to the time there was freezing rain the air had completely warmed and is now above 0 °C but the ground and all other surfaces are still cold.
I hope this helps, as this happens all the time where I live! :)
Answer:
The chemical formula does not show how the atoms are connected to one another.
Explanation:
With a chemical formula, you can see the types of elements that make up the compound, the number of atoms of each element in a molecule, and the chemical symbols of the elements in the compound.
Answer:
B. 111 J
Explanation:
The change in internal energy is the sum of the heat absorbed and the work done on the system:
ΔU = Q + W
At constant pressure, work is:
W = P ΔV
Given:
P = 0.5 atm = 50662.5 Pa
ΔV = 4 L − 2L = 2 L = 0.002 m³
Plugging in:
W = (50662.5 Pa) (0.002 m³)
W = 101.325 J
Therefore:
ΔU = 10 J + 101.325 J
ΔU = 111.325 J
Rounded to three significant figures, the change in internal energy is 111 J.
(1) MO₂(s) + C(s) → M(s) + CO₂ (g), ΔG₁ = 288.9 kJ/mol
(2) C(s) + O₂(g) → CO₂(g), ΔG₂ = -394.4 kJ/mol
By adding both equations 1 + 2 we get the coupled reaction:
MO₂(s) + 2 C(s) + O₂(g) → M(s) + 2 CO₂(g)
ΔG⁰ = ΔG₁ + ΔG₂
= 288.9 + (-394.4) = -105.5 kJ/mol = -105500 J/mol
Temperature T = 25 + 273.15 = 298.15 K
Molar gas constant R = 8.314 J/mol.K
K =
=
= 3.05 x 10¹⁸