This is best explained through the use of an optics diagram, this is a little too complicated to explain in a short answer, and as I can't draw an appropriate diagram in this answer, I will point you to this excellent resource which explains what you have asked very well!
Go onto the BBC website (you should have access to it even if you aren't in the UK) and paste this after the BBC url,
/bitesize/intermediate2/physics/waves_and_optics/image_formation_from_lens/revision/1/
Answer:
impulse = 8820 kg·
or 8820 N·s
Explanation:
Impulse J is equal to the average force
multiplied by the elapsed time Δt or in equation form, J =
Δt
As long as your force of 450 N is constant then that value is your average force
and your elapsed time is 19.4 seconds.
Multiply these values.
You will get an impulse of 8820 kg·
or 8820 N·s.
Answer:
Say: Mars has a much weaker gravity effect than it does because it is smaller and cannot have as much gravity effect than it does on earth.
Explanation:
Answer:
No, the 50 ohm and 100 ohm resistor will not continue to operate.
Explanation:
A closed circuit is the circuit in which there is no break between the negative and the positive end of the battery.
When in this, combinational circuit the 80 ohm resistor fail then there will not any continue supply of current in the circuit due to the breakage because the electron will flow from negative end of the battery to positive end if their is no breaking in the circuit.
Therefore the 50 ohm and 100 ohm circuit will not continue to operate because of the breaking of the circuit and current will not flow.
Answer:
236.3 x
C
Explanation:
Given:
B(0)=1.60T and B(t)=-1.60T
No. of turns 'N' =100
cross-sectional area 'A'= 1.2 x
m²
Resistance 'R'= 1.3Ω
According to Faraday's law, the induced emf is given by,
ℰ=-NdΦ/dt
The current given by resistance and induced emf as
I = ℰ/R
I= -NdΦ/dtR
By converting the current to differential form(the time derivative of charge), we get
= -NdΦ/dtR
dq= -N dΦ/R
The change in the flux dФ =Ф(t)-Ф(0)
therefore, dq =
(Ф(0)-Ф(t))
Also, flux is equal to the magnetic field multiplied with the area of the coil
dq = NA(B(0)-B(t))/R
dq= (100)(1.2 x
)(1.6+1.6)/1.3
dq= 236.3 x
C