Answer:
3 is the answer.
Explanation:
Nitrogen atoms will form three covalent bonds (also called triple covalent) between two atoms of nitrogen because each nitrogen atom needs three electrons to fill its outermost shell.
Answer:
3,4
Explanation:
Hydrogen has no other electron hence there is no screening of the valence electron by inner electrons. It is the lightest known element with a relative molecular mass of 2. Screening effect refers to the fact that inner or core electrons prevent the outermost electron from feeling the attractive force of the nucleus.
Answer:
ΔG°rxn = +50.8 kJ/mol
Explanation:
It is possible to obtain ΔG°rxn of a reaction at certain temperature from ΔH°rxn and S°rxn, thus:
<em>ΔG°rxn = ΔH°rxn - T×S°rxn (1)</em>
In the reaction:
2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l)
ΔH°rxn = 3×ΔHfNO2 + ΔHfH2O - (2×ΔHfHNO3 + ΔHfNO)
ΔH°rxn = 3×33.2kJ/mol + (-285.8kJ/mol) - (2×-207.0kJ/mol + 91.3kJ/mol)}
ΔH°rxn = 136.5kJ/mol
And S°:
S°rxn = 3×S°NO2 + S°H2O - (2×S°HNO3 + S°NO)
ΔH°rxn = 3×0.2401kJ/molK + (0.0700kJ/molK) - (2×0.146kJ/molK + 0.2108kJ/molK)
ΔH°rxn = 0.2875kJ/molK
And replacing in (1) at 298K:
ΔG°rxn = 136.5kJ/mol - 298K×0.2875kJ/molK
<em>ΔG°rxn = +50.8 kJ/mol</em>
<em />
Explanation:
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
Therefore, more is the surface area occupied by the carbon chain more will be the dispersion forces present in it. Hence, less is the surface area occupied by a molecule less will be the dispersion forces present in it.
Hence, the given molecules are organized from largest to smallest dispersion forces as follows.
>
>
>
>
> 
Answer:
See attached picture.
Explanation:
Hello!
In this case, since C2H3Cl is an organic compound we need a central C-C parent chain to which the three hydrogen atoms and one chlorine atom provides the electrons to get all the octets except for H as given on the statement.
In such a way, on the attached picture you can find the required Lewis dot structure without formal charges and with all the unshared electron pairs, considering there is a double bond binding the central carbon atoms in order to compete their octets.
Best regards!