Answer:
Resonance structures have <u> </u><u>same</u><u> </u> connectivity of atoms and <u> differ only in</u> distribution of electrons.
Explanation:
Atoms supply the electrons from their outer electron shells. Electrons are found free in nature and are grouped around the nucleus into shells. Electrons can be further explained as negatively charged subatomic particle. Electrons have properties of both particles and waves and they can be moved around.
Resonance structures are imaginary structures and not all of them are created equally. Resonance structures have two or more possible electron structures, and, the resonance structures for a particular substance sometimes have different energy and stability. When resonance structures are identical, they are important descriptions of the molecule. The position of the atoms is the same in the various resonance structures of a compound, but the electrons are distributed differently around the structure.
Answer:
a
idkdidkdidkdkkdhdksijsnansjnshejdhjsnnebdhhdbsbbshshhsnsjshs
We assume that the gas is an ideal gas so we can use the relation PV=nRT. Assuming that the temperature of the system is at ambient temperature, T = 298 K. We can calculate as follows:
PV = nRT
P = nRT / V
P = (0.801 mol ) (0.08205 L-atm / mol-K) (298.15 K) / 12 L
P = 1.633 atm
Answer: The pressure in a liquid is different at different depths. Pressure increases as the depth increases. The pressure in a liquid is due to the weight of the column of water above. The greater pressure at the bottom would give a greater 'force per unit area' on the wall.
Explanation:
The answer for this would be B!!