Explanation:
The only flaw I can find is you squared 3 instead of cubing it and it will be 27X^4 instead of 9x^4.
This reduces the amount slightly, but the number is still incredibly high (about 10 ^ 5 L is what I've calculated). Your professor might want to point out that this will not be a effective experiment due to the large volume of saturated
The Ksp value of Ca(OH)2 on the site (I used 5.5E-6 [a far more soluble compound than Al(OH)3]) and estimated how much of it will be needed. My calculation was approximately 30 ml. If you were using that much in the experiment, it implies so our estimates for Al(OH)3 are right, that the high amount is unreasonably big and that Al(OH)3 will not be a suitable replacement unless the procedure was modified slightly.
A skateboard coasting on a flat surface slows down and then comes to a stop because the skateboard runs out of energy, and slows down, also, sense it is on a flat surface and not going downhill, it goes slower.
Answer:The answer to this question comes from experiments done by the scientist Robert Boyle in an effort to improve air pumps. In the 1600's, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of gas at a constant temperature is increased, the volume of the gas decreases. when the pressure of gas is decreased, the volume increases. this relationship between pressure and volume is called Boyle's law.
Explanation: So, at constant temperature, the answer to your answer is: the volume decreases in the same ratio as the ratio of pressure increases.
BUT, in general, there is not a single answer to your question. It depend by the context.
For example, if you put the gas in a rigid steel tank (volume is constant), you can heat the gas, so provoking a pressure increase. But you won't get any change in volume.
Or, if you heat the gas in a partially elastic vessel (as a tire or a soccer ball) you will get both an increase of volume AND an increase of pressure.
FINALLY if you inflate a bubblegum ball, the volume will be increased without any change in pressure and temperature, because you have increased the NUMBER of molecules in the balloon.
There are many other ways to change volume and pressure of a gas that are different from the Boyle experiment.