<span>Weight of the skydiver m = 500 N
Terminal velocity V = 90 km/h
Here the weight of the person acts as the force, so based on the Newton's third law the applied is the force what we but in the opposite direction making the resistance. So the air resistance exerted on Suzie will be her weight that is 500N</span>
<em>weight = (mass) x (gravity)</em>
Weight = (5.00 kg) x (9.81 m/s²)
weight = (5.00 x 9.81) (kg-m/s²)
<em>Weight = 49.05 Newton</em>
The Oort cloud extends to the gravitational limits of the solar system would comets come from.
<h3>What is oort cloud?</h3>
It is a hypothetical idea of a cloud of mostly frozen planetesimals that would orbit the Sun at distances between 2,000 and 200,000 AU.
The Oort cloud reaches the solar system's outer gravitational boundaries, where comets originate.
Hence cloud extending to the gravitational limits of the solar system will be oorto cloud.
To learn more about the oort cloud refer;
brainly.com/question/23368033
#SPJ1
Answer:

Explanation:
Given:
The area of the house 
The height of the house 
We need to find the volume of a typical house.
Solution:
We find the volume of the house by multiplying the area of the house and height of the house.


Area and height of the house are known, so we substitute these value in above equation.


Now we convert the unit from feet to meter.
Divide the volume by 3.2808 for 


Therefore, the volume of the house is 
b). The power depends on the RATE at which work is done.
Power = (Work or Energy) / (time)
So to calculate it, you have to know how much work is done AND how much time that takes.
In part (a), you calculated the amount of work it takes to lift the car from the ground to Point-A. But the question doesn't tell us anywhere how much time that takes. So there's NO WAY to calculate the power needed to do it.
The more power is used, the faster the car is lifted. The less power is used, the slower the car creeps up the first hill. If the people in the car have a lot of time to sit and wait, the car can be dragged from the ground up to Point-A with a very very very small power ... you could do it with a hamster on a treadmill. That would just take a long time, but it could be done if the power is small enough.
Without knowing the time, we can't calculate the power.
...
d). Kinetic energy = (1/2) · (mass) · (speed squared)
On the way up, the car stops when it reaches point-A.
On the way down, the car leaves point-A from "rest".
WHILE it's at point-A, it has <u><em>no speed</em></u>. So it has no (<em>zero</em>) kinetic energy.