Answer:
126000 J
Explanation:
Applying,
Q = cm(t₂-t₁).................. Equation 1
Where Q = Amount of heat, c = specifc heat capacity of water, m = mass of water, t₁ = Initial temperature, t₂ = Final temperature.
From the question,
Given: m = 2 kg, t₁ = 25°C, t₂ = 40°C
Constant: c = 4200 J/kg.°C
Substitute these value into equation 1
Q = 2×4200(40-25)
Q = 2×4200×15
Q = 126000 J
Given:
Time: 3.5 hrs
Velocity: 120 miles/hr
Now Distance= Speed × Time
Now Velocity and speed have the same magnitude. Velocity being a vector quantity has a definite direction. Whereas speed is a scalar quantity,it indicates only the magnitude an doesn't define any direction.
Hence Distance = Velocity x time
Distance = 3.5 × 120 = 420 miles

Actually Welcome to the concept of Efficiency.
Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%
The efficiency is => 22% => 22/100.
so we get as,
E = W(output) /W(input)
hence, W(output) = E x W(input)
so we get as,
W(output) = (22/100) x 2.2 x 10^7
=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7
hence, W(output) = 4.84 x 10^6 J
The useful work done on the mass is 4.84 x 10^6 J
Answer:
n = 5 approx
Explanation:
If v be the velocity before the contact with the ground and v₁ be the velocity of bouncing back
= e ( coefficient of restitution ) = 
and

h₁ is height up-to which the ball bounces back after first bounce.
From the two equations we can write that


So on

= .00396
Taking log on both sides
- n / 2 = log .00396
n / 2 = 2.4
n = 5 approx
Sound wave > electric signal > radio wave > sound wave