Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:
Writing reactants on the left, and the products are written on the right
Explanation:
Answer:
Perpendicular to the electric field and magnetic field
Explanation:
Electromagnetic waves are transverse waves composed by the perpendicular oscillating electric and magnetic fields.
EM waves have both Electrical and magnetic features.
they travel in the velocity of light (3*10⁸ ms⁻¹)
they does not require any media to travel. It has two perpendicular electric field and the magnetic field which are perpendicular to each other
They travel perpendicular to each of those electric and magnetic fields.
Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.
Answer:
Chemical energy
Explanation:
The energy held in the foods molecules a lunch pack is composed of is chemical energy.
They occur within food substances which originates from plants and animals as giant organic molecules.
- Since food is often derived from plants and animals.
- Plants produce their own food by producing macromolecules from simple inorganic substances in the environment.
- Animals takes up these food and build their own body through it.
- Plants and animal parts constitutes organic molecules in which chemical energy is duly stored.
- When the molecules are broken down, they released their chemical potential energy into heat energy.