Answer:
Explanation:
you would have to look more around the page, for example look at some ways that you can right down.
Answer:
V₂ = 1.92 L
Explanation:
Given data:
Initial volume = 0.500 L
Initial pressure =2911 mmHg (2911/760 = 3.83 atm)
Initial temperature = 0 °C (0 +273 = 273 K)
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
by putting values,
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 3.83 atm × 0.500 L × 273 K / 273 K × 1 atm
V₂ = 522.795 atm .L. K / 273 K.atm
V₂ = 1.92 L
Answer:
Federal, State, Municipal and County
Explanation:
A decentralized system of crime laboratories currently exists in the United States under the auspices of various governmental agencies at the federal, state, municipal and county levels of government.
A foreign DNA molecule can be incorporated into a bacterial plasmid during a transformation reaction.
<h3>How to explain the reaction?</h3>
With the aid of two enzymes, ligase and restriction enzymes, a foreign DNA molecule can be incorporated into a bacterial plasmid during a transformation reaction. Each enzyme detects a target DNA sequence and cuts it nearby, while ligase aids in connecting the DNA. When two bits of DNA have complimentary bases, it facilitates their joining.
Plasmid and the insert fragment are both present in the microfuge tube, and they both have compatible sticky ends. However, the ligase has been denatured and is no longer active because the prior student left it outside rather than freezing it; despite this, we had already put the ligase into the tube. Ligase aids in binding the plasmid and insert fragments together, but because it is denatured in this instance, it will no longer be able to do so. As a result, no transformation process will take place. And since ligase links DNA fragments together by catalyzing the development of connections between the nearby nucleotides, the two fragments will not be able to unite.
Learn more about reactions on:
brainly.com/question/11231920
#SPJ1