1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
6

A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insu

lated on one side, while the other side is exposed to a fluid at 32°C. The convection heat transfer coefficient between the wall and the fluid is 400 W/m2·K. Determine the maximum temperature in the wall.
Engineering
1 answer:
Contact [7]3 years ago
4 0

Answer:

T = 167 ° C

Explanation:

To solve the question we have the following known variables

Type of surface = plane wall ,

Thermal conductivity k = 25.0 W/m·K,  

Thickness L = 0.1 m,

Heat generation rate q' = 0.300 MW/m³,

Heat transfer coefficient hc = 400 W/m² ·K,

Ambient temperature T∞ = 32.0 °C

We are to determine the maximum temperature in the wall

Assumptions for the calculation are as follows

  • Negligible heat loss through the insulation
  • Steady state system
  • One dimensional conduction across the wall

Therefore by the one dimensional conduction equation we have

k\frac{d^{2}T }{dx^{2} } +q'_{G} = \rho c\frac{dT}{dt}

During steady state

\frac{dT}{dt} = 0 which gives k\frac{d^{2}T }{dx^{2} } +q'_{G} = 0

From which we have \frac{d^{2}T }{dx^{2} }  = -\frac{q'_{G}}{k}

Considering the boundary condition at x =0 where there is no heat loss

 \frac{dT}{dt} = 0 also at the other end of the plane wall we have

-k\frac{dT }{dx } = hc (T - T∞) at point x = L

Integrating the equation we have

\frac{dT }{dx }  = \frac{q'_{G}}{k} x+ C_{1} from which C₁ is evaluated from the first boundary condition thus

0 = \frac{q'_{G}}{k} (0)+ C_{1}  from which C₁ = 0

From the second integration we have

T  = -\frac{q'_{G}}{2k} x^{2} + C_{2}

From which we can solve for C₂ by substituting the T and the first derivative into the second boundary condition s follows

-k\frac{q'_{G}L}{k} = h_{c}( -\frac{q'_{G}L^{2} }{k}  + C_{2}-T∞) → C₂ = q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞

T(x) = \frac{q'_{G}}{2k} x^{2} + q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞ and T(x) = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} )-x^{2} )

∴ Tmax → when x = 0 = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} ))

Substituting the values we get

T = 167 ° C

You might be interested in
Consider a Mach 4.5 airflow at a pressure of 1.25 atm. We want to slow this flow to a subsonic speed through a system of shock w
marissa [1.9K]

Answer:

a. 130.73 atm

b. 102.62 atm

c. 87.1 atm

Explanation:

See the attached pictures.

6 0
3 years ago
Plz help electrical technology
oksano4ka [1.4K]

Answer:

OPTION A,Larger

HOPE IT HELPS

8 0
3 years ago
Read 2 more answers
What was a campaign belief in the 1980 presidential election? Carter called for a stronger national defense. Carter promised to
andreyandreev [35.5K]

Answer:

C

Explanation:

On edge 2021

6 0
3 years ago
Read 2 more answers
A 1-kW electric resistance heater submerged in 10-kg water is turned on and kept on for 15 min. During the process, 400 kJ of he
hichkok12 [17]

Answer:

ΔT=  11.94 °C

Explanation:

Given that

mass of water = 10 kh

Time t= 15 min

Heat lot from water = 400  KJ

Heat input to the water = 1  KW

Heat input the water= 1 x 15 x 60

                                =900 KJ

By heat balancing

Heat supply - heat rejected = Heat gain by water

As we know that heat capacity of water

C_p=4.187 \frac{KJ}{kg-K}

Q=mC_p\Delta T

Now by putting the values

900 - 400 = 10 x 4.187 x ΔT

So  rise in temperature of water ΔT=  11.94 °C

6 0
3 years ago
As cylinder pressure and heat increase due to an increased load condition, the fuel injection management system must ___________
Temka [501]

possible Answers:

Compensate ⭐⭐⭐⭐⭐

Adjust            ⭐⭐⭐⭐⭐

regulate         ⭐⭐⭐⭐

tune               ⭐⭐⭐

calibrate        ⭐⭐⭐

balance         ⭐⭐

correct           ⭐

6 0
2 years ago
Other questions:
  • Estimate the quantity of soil to be excavated from the borrow pit​
    12·1 answer
  • Two advantages of deforming steel at room temperature rather than at elevated temperatures are: (select 2 answers from the optio
    13·1 answer
  • Finally you will implement the full Pegasos algorithm. You will be given the same feature matrix and labels array as you were gi
    12·1 answer
  • Is there a way to get the answers to a NCCER book test?
    7·1 answer
  • An airplane flies horizontally at 80 m/s. Its propeller delivers 1300 N of thrust (forward force) to overcome aerodynamic drag (
    15·1 answer
  • Technician A says that squeeze-type resistance spot welding (STRSW) may be used on open butt joints. Technician B says that repl
    14·1 answer
  • Provide two programming examples in which multithreading provides better performance than a single-threaded solution. Provide on
    11·1 answer
  • Hello how are you all bye everyone have a great day ahead​
    8·2 answers
  • 9. Imagine that you're performing measurements on a circuit with a multimeter. You measure a total circuit
    14·2 answers
  • Instructions: For each problem, identify the appropriate test statistic to be use (t test or z-test). Then compute z or t value.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!