1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiv31 [10]
3 years ago
12

A 1-kW electric resistance heater submerged in 10-kg water is turned on and kept on for 15 min. During the process, 400 kJ of he

at is lost from the water. The temperature rise of water is : (a) 21.50 (b) 12.0C (c)31.1C (d) 50.0C
Engineering
1 answer:
hichkok12 [17]3 years ago
6 0

Answer:

ΔT=  11.94 °C

Explanation:

Given that

mass of water = 10 kh

Time t= 15 min

Heat lot from water = 400  KJ

Heat input to the water = 1  KW

Heat input the water= 1 x 15 x 60

                                =900 KJ

By heat balancing

Heat supply - heat rejected = Heat gain by water

As we know that heat capacity of water

C_p=4.187 \frac{KJ}{kg-K}

Q=mC_p\Delta T

Now by putting the values

900 - 400 = 10 x 4.187 x ΔT

So  rise in temperature of water ΔT=  11.94 °C

You might be interested in
Convert A'B'C'D' + A'B'C'D + A'B'CD' + A'BC'D + AB'C'D' + AB'C'D+ AB'CD' to SOP form
bazaltina [42]

Answer:

thats really hard how could you answerthis hhhhhhh

6 0
2 years ago
Read 2 more answers
Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the e
a_sh-v [17]

Answer:

Outside temperature =88.03°C

Explanation:

Conductivity of air-soil from standard table

   K=0.60 W/m-k

To find temperature we need to balance energy

Heat generation=Heat dissipation

Now find the value

We know that for sphere

q=\dfrac{2\pi DK}{1-\dfrac{D}{4H}}(T_1-T_2)

Given that q=500 W

so

500=\dfrac{2\pi 2\times .6}{1-\dfrac{2}{4\times 10}}(T_1-25)

By solving that equation we get

T_2=88.03°C

So outside temperature =88.03°C

6 0
3 years ago
A medium-sized jet has a 3.8-mm-diameter fuselage and a loaded mass of 85,000 kg. The drag on an airplane is primarily due to th
SCORPION-xisa [38]

Answer:

F_{thrust} ≅ 111 KN

Explanation:

Given that;

A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8

mass = 85,000 kg

drag co-efficient (C) = 0.37

(velocity (v)= 230 m/s

density (ρ) = 1.0 kg/m³

To calculate the thrust; we need to determine the relation of the drag force; which is given as:

F_{drag} = \frac{1}{2} × CρAv²

where;

ρ = density of air wind.

C = drag co-efficient

A = Area of the jet

v = velocity of the jet

From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0

SO, F_{drag}-F_{thrust} = 0

We can as well say:

F_{drag}= F_{thrust}

We can now replace F_{thrust} with F_{drag} in the above equation.

Therefore, F_{thrust} = \frac{1}{2} × CρAv²

The A which stands as the area of the jet is given by the formula:

A=\frac{\pi d^2}{4}

We can now have a new equation after substituting our A into the previous equation as:

F_{thrust} = \frac{1}{2} × Cρ (\frac{\pi d^2}{4})v^2

Substituting our data from above; we have:

F_{thrust} = \frac{1}{2} × (0.37)(1.0kg/m^3)(\frac{\pi(3.8m)^2 }{4})(230m/s)^2

F_{thrust} = \frac{1}{8}   (0.37)(1.0kg/m^3)({\pi(3.8m)^2 })(230m/s)^2

F_{thrust} = 110,990N

F_{thrust}  in N (newton) to KN (kilo-newton) will be:

F_{thrust} = (110,990N)*\frac{1KN}{1,000N}

F_{thrust} = 110.990 KN

F_{thrust} ≅ 111 KN

In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.

5 0
3 years ago
A hydraulic jump is induced in an 80 ft wide channel.The water depths on either side of the jump are 1 ft and 10 ft.Please calcu
krek1111 [17]

Answer:

a) 42.08 ft/sec

b) 3366.33 ft³/sec

c) 0.235

d) 18.225 ft

e) 3.80 ft

Explanation:

Given:

b = 80ft

y1 = 1 ft

y2 = 10ft

a) Let's take the formula:

\frac{y2}{y1} = \frac{1}{5} * \sqrt{1 + 8f^2 - 1}

10*2 = \sqrt{1 + 8f^2 - 1

1 + 8f² = (20+1)²

= 8f² = 440

f² = 55

f = 7.416

For velocity of the faster moving flow, we have :

\frac{V_1}{\sqrt{g*y_1}} = 7.416

V_1 = 7.416 *\sqrt{32.2*1}

V1 = 42.08 ft/sec

b) the flow rate will be calculated as

Q = VA

VA = V1 * b *y1

= 42.08 * 80 * 1

= 3366.66 ft³/sec

c) The Froude number of the sub-critical flow.

V2.A2 = 3366.66

Where A2 = 80ft * 10ft

Solving for V2, we have:

V_2 = \frac{3666.66}{80*10}

= 4.208 ft/sec

Froude number, F2 =

\frac{V_2}{g*y_2} = \frac{4.208}{32.2*10}

F2 = 0.235

d) El = \frac{(y_2 - y_1)^3}{4*y_1*y_2}

El = \frac{(10-1)^3}{4*1*10}

= \frac{9^3}{40}

= 18.225ft

e) for critical depth, we use :

y_c = [\frac{(\frac{3366.66}{80})^2}{32.2}]^1^/^3

= 3.80 ft

7 0
3 years ago
Read 2 more answers
Much of the workd went to bed hungry
Marysya12 [62]
The workers went to bed hungry probably because they are hard workers and so didn’t want to eat because they didn’t want to take break┌(; ̄◇ ̄)┘
7 0
3 years ago
Other questions:
  • Select the properties and typical applications for the high carbon steels.
    12·1 answer
  • A bridge to be fabricated of steel girders is designed to be 500 m long and 12 m wide at ambient temperature (assumed 20°C). Exp
    9·1 answer
  • A mass of 0.3 kg is suspended from a spring of stiffness 0.4 N/mm. The damping is 3.286335345 kg/s. What is the undamped natural
    5·1 answer
  • Verify the below velocity distribution describes a fluid in a state of pure rotation. What is the angular Velocity? (a)-Vx = -1/
    7·1 answer
  • 5.5 A scraper with a 275 hp diesel engine will be used to excavate and haul earth for a highway project. An evaluation of the jo
    10·1 answer
  • What is a coarse-grained rock composed of intermediate plagioclase feldspar and pyroxene? a. graniteb. gabbro c. andesited. peri
    9·1 answer
  • Safety-in engineering as with everything else is all about trying to maximize or create the hazards involved with what you are d
    6·2 answers
  • What are the materials and tools used to build a headgear?​
    5·1 answer
  • HOLA COMO ESTAN TODOS
    14·1 answer
  • Motors are used to convert electrical energy into mechanical work and the output mechanical work of a motor is rated in horsepow
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!