Answer: D. 4,6,4
Explanation:
The valence electron is the electron found in the outermost shell of an atom, and participates in bond formation.
For the following element, the valence electron can be noticed when we write the electronic configuration of each element.
Silicon = 1s2 2s2 2P6 3s2 3p2
Sulphur = 1s2 2s2 2P6 3s2 3p4
Germanium = 1s2 2s2 2P6 3s2 3p6 3d10 4s2 4p2
Answer:
A protein is more stable in its native form, because apart of weak interactions between R groups, it also presents other stronger interactions, as those including covalent bonds
Explanation:
For example, covalent bonds between sulfur atoms when disulfide bridges are built. These links are very difficult to break and maintains the protein shape. Disulfide bonds are a few but they use to incide in the structure of native proteins
Answer:
the top one is 100.000 and bottom one is 100.000
Explanation:
You input potential (stored<span>) </span>energy<span> into the </span>rubber band<span> system when you </span>stretched<span> the</span>rubber band<span> back. Because it is an </span>elastic<span> system, this kind of potential </span>energy<span> is specifically </span>called elastic<span> potential </span>energy<span>. ... When the </span>rubber band<span> is released, the potential </span>energy<span> is quickly converted to kinetic (motion) </span>energy<span>.</span>
Answer:
Explanation:
We have to start with the <u>reaction</u>:

We have the same amount of atoms on both sides, so, we can continue. The next step is to find the <u>number of moles</u> that we have in the 110.0 g of carbon dioxide, to this, we have to know the <u>atomic mass of each atom</u>:
C: 12 g/mol
O: 16 g/mol
Mg: 23.3 g/mol
If we take into account the number of atoms in the formula, we can calculate the <u>molar mass</u> of carbon dioxide:
In other words:
. With this in mind, we can calculate the moles:

Now, the <u>molar ratio</u> between carbon dioxide and magnesium carbonate is 1:1, so:

With the molar mass of
(
. With this in mind, we can calculate the <u>grams of magnesium carbonate</u>:
I hope it helps!