From Q = mcΔΤ, the specific heat capacity, c, of the metal that was cooled is c = Q/mΔT = (-769 J)/(46.4 g)(30.0 °C - 101.0 °C) = 0.233 J/g °C. From the table, it appears that this is the specific heat capacity of silver. So, the metal is most like silver.
Note: The value for Q was written as a negative value in the equation as heat energy was given off by the metal when the metal was cooled (from the metal’s point of view, it’s losing heat energy).
You would want to make sure that you have controlled the variables properly, and if you determine that you did then you would repeat the experiment to be sure of the results.
Answer:
A
Explanation:
Matter is anything that has weight and occupies space. Weight is synonymous to mass
Answer:
31.7 °C
Explanation:
Charles law states that for volume of a gas is directly proportional to the absolute temperature for a fixed amount of gas at constant pressure
we can use the following equation
V1/T1 = V2/T2
where V1 is volume and T1 is temperature at first instance
V2 is volume and T2 is temperature at second instance
temperature should be in kelvin scale
T1 - 0 °C + 273 = 273 K
substituting the values in the equation
22.4 L / 273 K = 25.0 L / T2
T2 = 304.7 K
temperature in celcius is - 304.7 K - 273 = 31.7 °C
the gas must be 31.7 °C to reach a volume of 25.0 L