Lar mass of Ca<span> = 40.08 </span>grams/mole 77.4 g Ca<span> * ( 1 </span>mole Ca<span>/ 40.08 ... n = m / M 1mol </span>Ca<span>weights 40 gmol-1 n = 77,4 / 40 = 1.93 </span>mol<span>.</span>
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))
Birds use the magnetic fields and some fish i believe as well and maybe butterflies im not entirely sure <span />
Distance and period of time is the correct answer
Hope this helps!
When ketone is reacted with phosphorous pentachloride, chlorination takes place at the carbonyl carbon with substitution of the oxygen atom to give a geminal dichloride (with 2 Cl atoms on same carbon) according to the following equation:
so we can say that acetone is converted into 2,2-dichloropropane by action of PCl₅
<span />