The heat will flow from copper to aluminum because Cu is at higher temperature. The heat liberated is -7.60kJ
When two metals at different temperatures are kept in contact, heat flows from hotter metal to colder metal until thermal equilibrium is reached.
Here Copper is at a temperature of 60 degree Celsius and aluminum is at 40 degree Celsius. Thus, heat will flow from Cu to Al.
In order to calculate the amount of heat liberated following calculations are required.
m1=262 g
T1=87 oC
Cp=0.385 J/g oC
T2=11.8 oC
The heat liberated can be expressed as follows:
Q=mCp(T2-T1)
Q=262 g*0.385 J/goC(11.8-87)oC
Q=-7585 J
=-7.60kJ
To learn more about heat check the link below:
brainly.com/question/13439286
#SPJ4
The mass of 254 mL of water is 254 g. Since the density of water is 1g/mL, we can simply multiply the density 1g/mL by 254 mL of water and get 254 g as our answer. Since mL is in the numerator and denominator, mL cancels out and we are left with g only.
Protista .................................
Answer: The charge on the plates are 88.4 picafarad
Explanation:The equation used in measuring charge in a plate is given as:
C=Q/V =E A/D
Where E= dielectric content
A= Area of plates
d= distance between plates
Using dielectric constant for Air=8.84×10-12F/m
A=100cm2=0.01m2
d=10mm=0.001m
C= 8.84×10-12×0.01/0.001
C= 88.4 picafarad
Answer: Option A, 66.5
Explanation:
So you want to use the heat capacity formula
So, q(heat)=m(mass) * cp (specific heat) * DeltaT (change in temp)
so m=45.8, cp =0.385, q=1172
you dont have the final temp for DeltaT so you have to fill in and divide
1172 = (45.8) * (0.385) * Delta T
1172 = 17.633 * DeltaT (Now divide)
1172/17.633 = Delta T
66.46 = Delta T, rounded you get 66.5 or option A