The answer would be C because there is six electrons and so there will be six protons because the amount of protons and electrons have to be the same otherwise it would be an unbalanced particle and you wouldn't be able to touch the object it is in without worrying about something happening
Answer:
22m/s
Explanation:
To find the velocity we employ the equation of free fall: v²=u²+2gh
where u is initial velocity, g is acceleration due to gravity h is the height, v is the velocity the moment it hits the ground, taking the direction towards gravity as positive.
Substituting for the values in the question we get:
v²=2×9.8m/s²×25m
v²=490m²/s²
v=22.14m/s which can be approximated to 22m/s
Manganese has 2 (two) electron that would free floating and able to form a metallic bond.
The electronic configuration of manganese is (Ar) 3d5 4s2. The two electron in 4s orbital are the valence electron which can freely move from one place to another.
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer: The changing magnetic field caused by the material's motion induces a current in the coil of wire proportional to the change in field. If a 0 is represented, the magnetic field does not change between the two domains of a bit, so no current is induced as the magnetic material passes the coil.