Answer:
dolphins and wolfs very easy
Explanation:
Answer:
The reflection and rectilinear propagation of light helps in the formation of shadows and also tells light doesn't penetrate opaque materials.
If it's volume changes when you move it to the new container it would be a solid
Answer:
Part a)
![v_2 = \frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})}](https://tex.z-dn.net/?f=v_2%20%3D%20%5Cfrac%7B%5Cfrac%7B2%5Cbeta%20mL%5E2v_o%7D%7Bd%7D%7D%7B%28md%20%2B%20%5Cfrac%7B%5Cbeta%20mL%5E2%7D%7Bd%7D%281%20%2B%20%5Cfrac%7Bm%7D%7BM%7D%29%7D)
Part b)
![v_1 = v_0 - \frac{m}{M}(\frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})})](https://tex.z-dn.net/?f=v_1%20%3D%20v_0%20-%20%5Cfrac%7Bm%7D%7BM%7D%28%5Cfrac%7B%5Cfrac%7B2%5Cbeta%20mL%5E2v_o%7D%7Bd%7D%7D%7B%28md%20%2B%20%5Cfrac%7B%5Cbeta%20mL%5E2%7D%7Bd%7D%281%20%2B%20%5Cfrac%7Bm%7D%7BM%7D%29%7D%29)
Explanation:
Since the ball and rod is an isolated system and there is no external force on it so by momentum conservation we will have
![Mv_o = M v_1 + m v_2](https://tex.z-dn.net/?f=Mv_o%20%3D%20M%20v_1%20%2B%20m%20v_2)
here we also use angular momentum conservation
so we have
![M v_o d = M v_1 d + \beta mL^2 \omega](https://tex.z-dn.net/?f=M%20v_o%20d%20%3D%20M%20v_1%20d%20%2B%20%5Cbeta%20mL%5E2%20%5Comega)
also we know that the collision is elastic collision so we have
![v_o = (v_2 + d\omega) - v_1](https://tex.z-dn.net/?f=v_o%20%3D%20%28v_2%20%2B%20d%5Comega%29%20-%20v_1)
so we have
![\omega = \frac{v_o + v_1 - v_2}{d}](https://tex.z-dn.net/?f=%5Comega%20%3D%20%5Cfrac%7Bv_o%20%2B%20v_1%20-%20v_2%7D%7Bd%7D)
also we know
![M v_o d - M v_1 d = \beta mL^2(\frac{v_o + v_1 - v_2}{d})](https://tex.z-dn.net/?f=M%20v_o%20d%20-%20M%20v_1%20d%20%3D%20%5Cbeta%20mL%5E2%28%5Cfrac%7Bv_o%20%2B%20v_1%20-%20v_2%7D%7Bd%7D%29)
also we know
![v_1 = v_o - \frac{m}{M}v_2](https://tex.z-dn.net/?f=v_1%20%3D%20v_o%20-%20%5Cfrac%7Bm%7D%7BM%7Dv_2)
so we have
![M v_o d - M(v_o - \frac{m}{M}v_2)d = \beta mL^2(\frac{v_o + v_o - \frac{m}{M}v_2 - v_2}{d})](https://tex.z-dn.net/?f=M%20v_o%20d%20-%20M%28v_o%20-%20%5Cfrac%7Bm%7D%7BM%7Dv_2%29d%20%3D%20%5Cbeta%20mL%5E2%28%5Cfrac%7Bv_o%20%2B%20v_o%20-%20%5Cfrac%7Bm%7D%7BM%7Dv_2%20-%20v_2%7D%7Bd%7D%29)
![mv_2 d = \beta mL^2\frac{2v_o}{d} - \beta mL^2(1 + \frac{m}{M})\frac{v_2}{d}](https://tex.z-dn.net/?f=mv_2%20d%20%3D%20%5Cbeta%20mL%5E2%5Cfrac%7B2v_o%7D%7Bd%7D%20-%20%5Cbeta%20mL%5E2%281%20%2B%20%5Cfrac%7Bm%7D%7BM%7D%29%5Cfrac%7Bv_2%7D%7Bd%7D)
now we have
![(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})v_2 = \frac{2\beta mL^2v_o}{d}](https://tex.z-dn.net/?f=%28md%20%2B%20%5Cfrac%7B%5Cbeta%20mL%5E2%7D%7Bd%7D%281%20%2B%20%5Cfrac%7Bm%7D%7BM%7D%29v_2%20%3D%20%5Cfrac%7B2%5Cbeta%20mL%5E2v_o%7D%7Bd%7D)
![v_2 = \frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})}](https://tex.z-dn.net/?f=v_2%20%3D%20%5Cfrac%7B%5Cfrac%7B2%5Cbeta%20mL%5E2v_o%7D%7Bd%7D%7D%7B%28md%20%2B%20%5Cfrac%7B%5Cbeta%20mL%5E2%7D%7Bd%7D%281%20%2B%20%5Cfrac%7Bm%7D%7BM%7D%29%7D)
Part b)
Now we know that speed of the ball after collision is given as
![v_1 = v_o - \frac{m}{M}v_2](https://tex.z-dn.net/?f=v_1%20%3D%20v_o%20-%20%5Cfrac%7Bm%7D%7BM%7Dv_2)
so it is given as
![v_1 = v_0 - \frac{m}{M}(\frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})})](https://tex.z-dn.net/?f=v_1%20%3D%20v_0%20-%20%5Cfrac%7Bm%7D%7BM%7D%28%5Cfrac%7B%5Cfrac%7B2%5Cbeta%20mL%5E2v_o%7D%7Bd%7D%7D%7B%28md%20%2B%20%5Cfrac%7B%5Cbeta%20mL%5E2%7D%7Bd%7D%281%20%2B%20%5Cfrac%7Bm%7D%7BM%7D%29%7D%29)
Answer:
Option B is correct.
Explanation:
Potential energy or chemical potential energy is used to Cook food which is then converted into thermal energy. The type of energy used also depends upon the type of cooking appliances used.
For e.g. stove convert potential energy to thermal energy.