- The wavelength range of Infrared radiation is 700 nanometers to 1 millimeter.
- The sun emits mainly near-infrared which is mainly composed of wavelength below 4 micrometers.
- The thermal range of infrared ranges between wavelengths 3.5 and 2.0 micrometers
Explanation:
The wavelength range of Infrared radiation is 700 nanometers to 1 millimeter. This also translates to a frequency range of 430 TeraHertz to 300 Giga Hertz.
Because the sun is a star and is hot in comparison to earth and other planetary bodies, the bigger range of infrared radiation it emits is in the near-infrared which is mainly composed of wavelength below 4 micrometers.
The earth's surface produces infrared radiation of the mid-infrared range while cooler substances will produce far-infrared range
The thermal range of infrared ranges between wavelengths 3.5 and 2.0 micrometers and is produced by black bodies.
Learn More:
For more on infrared radiation check out;
brainly.com/question/2369243
#LearnWithBrainly
Answer:
P_2 =0.51 atm
Explanation:
Given that:
Volume (V1) = 2.50 L
Temperature (T1) = 298 K
Volume (V2) = 4.50 L
at standard temperature and pressure;
Pressure (P1) = 1 atm
Temperature (T2) = 273 K
Pressure P2 = ??
Using combined gas law:




2HCO3 - + Ca2+ CaCO3 + CO2 + H2O Bicarbonate (HCO3-) combines with calcium ions in the water to make calcium carbonate (CaCO3, limestone). This process can occur both within organisms such as corals or as a simple chemical reaction in the water itself.
Then that would be 100% all together I believe
Answer:

Explanation:
To find the weight (W) of the pond contents first we need to use the following equation:
(1)
Where m the mass and g is the gravity
Also, we have that the mass is:
(2)
Where ρ is the density and V the volume
We cand calculate the volume as follows:
(3)
Where L is the length, w is the wide and d is the depth
By entering equation (2) and (3) into (1) we have:

Therefore, the weight of the pond is 6.65x10⁶ lbf.
I hope it helps you!