During normal respiration, about 500ml of air enters and leaves the lungs with each respiratory cycle. This is called the<u> tidal volume</u>.
When a person is relaxed, the normal amount of air such a person breathes in and out is called the tidal volume. It is usually measured in millimeters. For the average adult male, it is 500ml, and the tidal volume of average adult female 400ml.
In order to regulate oxygen intake and expulsion of carbon dioxide, the lungs act as buffers in order to absorb the maximum amount of oxygen possible for respiration and other metabolic functions in the body.
When the tidal volume is above or below the 500ml mark, it could signal the presence of underlying pathological conditions like bronchitis, emphysema and asthma.
To find out more about tidal volume, visit:
brainly.com/question/17439101
#SPJ4
Answer:
3.33 L
Explanation:
We can solve this problem by using the equation:
Where the subscript 1 refers to one solution and subscript 2 to the another solution, meaning that in this case:
We input the data:
- 0.25 M * 100 L = 7.5 M * V₂
Thus the answer is 3.33 liters.
Answer:
The absorbance of the myoglobin solution across a 1 cm path is 0.84.
Explanation:
Beer-Lambert's law :
Formula used :



where,
A = absorbance of solution
c = concentration of solution
= Molar absorption coefficient
l = path length
= incident light
= transmitted light
Given :
l = 1 cm, c = 1 mg/mL ,
Molar mass of myoglobin = 17.8 kDa = 17.8 kg/mol=17800 g/mol
(1 Da = 1 g/mol)
c = 1 mg /mL = 

1 mg = 0.001 g, 1 mL = 0.001 L


The absorbance of the myoglobin solution across a 1 cm path is 0.84.
Answer:
Theories
Explanation:
It is theories because it was a generalistee abstract or thinking generalising the principle of fact about Earth tectonic plates ,it was formulated and concluded as plate tectonic theories after many findings. The theories conclude that the Earth has an outer layer called lithosphere and lies overly a plastic layer called asthenosphere. The lithosphere is divided into several plates and they move close to each other where they diverge, converge or slip over one another.