Its D for plato.
by other people who asked
By 1.23 x 1024 you mean 10 to the power of 24 molecules? If so all you need to do is divide the number of molecules you have by Avagadros number, 6.022 x 10^23. This will give you the mols of water, or the mols of anything, since there is always 6.022 x 10^23 molecules in 1 mol of substance.
1.23x10^24 atoms/6.022x10^23 atom/mol = 2.04 mol H20
<h2>Hey there! :) </h2>
<h3>The treatment and disposal of Mercury:</h3>
- Heating and incineration can release the mercury vapor into atmosphere causing atmospheric pollution. The process of solidification and disposal into secured landfill, gas phase recovery of mercury, and thermal treatment is gaining interest in mercury treatment and recovery field by various researchers and industries.
<h2>HOPE IT HELP YOU </h2>
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct place to click on any of the double peak showing between 2500 and 3000
on the uploaded question
Explanation:
The group which is being highlighted is an Aldehyde functional group denoted by this structure (
)
This groups stretch on the infrared spectrometer gives two medium intensities peaks
Its stretch comes at 2820 - 2850
peak 1
and at 2720 - 2750
peak 2
So the correct click would be on any of the two peaks between 2500 - 3000
region
Answer:
Length = 393pm, Density = 21.3 g/cm^3.
Explanation:
From the question above, we have the following parameters or data which is going to aid in solving the above Question.
=> The radius of a platinum atom = 139 pm.
Therefore, the length can be calculated by making use of the formula given below:
Length = 2 √( 2r) = 2 × √ (2 × 139 × 10^-12m ) = 393 × 10^-10 m = 393pm.
The density can be calculated by making use of the chemical formula given below:
Density = mass ÷ volume = (195.064/ 6.02 × 10^23) ÷ (3.93 × 10^-10/ 10^-2) = 21.3 g/cm^3.