1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vsevolod [243]
3 years ago
5

Both the experimental group and the control group are exposed to the same __________.

Physics
2 answers:
Black_prince [1.1K]3 years ago
3 0
Both the experimental group and the control group are exposed to the same type of treatment.
Sindrei [870]3 years ago
3 0

Answer:

Type of treatment

Explanation:

You might be interested in
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.220 rev/s . The magnitude
matrenka [14]

Answer:

1) The fan's angular velocity after 0.208 seconds is approximately 2.585 rad/s

2) The number of revolutions the blade has travelled in 0.208 s is approximately 0.066 revolutions

3) The tangential speed of a point on the tip of the blade at time t = 0.208 s is approximately 1.034 m/s

4) The magnitude of the tangential acceleration of a point on the tip of the blade at time t = 0.208 seconds is approximately 2.312 m/s²

Explanation:

The given parameters are;

The initial velocity of the fan, n = 0.220 rev/s

The magnitude of the angular acceleration = 0.920 rev/s²

The direction of the angular acceleration and the angular velocity = Clockwise

The diameter of the circle formed by the electric ceiling fan blades, D = 0.800 m

1) The initial angular velocity of the fan, ω₀ = 2·π × n = 2·π × 0.220 rev/s = 1.38230076758 rad/s

The angular acceleration of the fan, α = 2·π×0.920 rad/s² = 5.78053048261 rad/s²

The fan's angular velocity, 'ω', after a time t = 0.208 seconds has passed is given as follows;

ω = ω₀ + α·t

From which we have;

ω = 1.38230076758 rad/s + 5.78053048261 rad/s × 0.208 s = 2.58465110796 rad/s

The fan's angular velocity after 0.208 seconds is ω ≈ 2.585 rad/s

2) The number of revolutions the blade has travelled in the given time interval is given from the angle turned, 'θ', in the given time as follows;

θ = ω₀·t + 1/2·α·t²

θ = 1.38230076758 × 0.208 + 1/2 × 5.78053048261 × 0.208² = 0.41256299505 radians

2·π radians = 1 revolution

∴ 0.41256299505 radians = 0.41256299505 radian× 1 revolution/(2·π radian) = 0.06566144 revolution

The number of revolutions the blade has travelled in 0.208 s ≈ 0.066 revolutions

3) The tangential speed of a point on the tip of the blade at time t = 0.208 s is given as follows;

The tangential speed, v_t = ω × r = ω × D/2

At t = 0.208 s, ω = 2.58465110796 rad/s, therefore, we have;

v_t = ω × D/2 = 2.58465110796 × 0.800/2 = 1.0338604413

The tangential speed, v_t = 1.0338604413 m/s

The tangential speed ≈ 1.034 m/s

4)  The magnitude of the tangential acceleration of a point on the tip of the blade at time t = 0.208 seconds, 'a' is given as follows;

a = α × r = α × D/2

a = 5.78053048261 × 0.800/2 = 2.31221219304

The tangential acceleration, a ≈ 2.312 m/s²

4 0
2 years ago
A 0.12 g honeybee acquires a charge of +24pC while flying. The earth's electric field near the surface is typically 100 N/C, dow
shusha [124]

Answer:

150000000

\dfrac{F_e}{F_g}=0.00000203873598369

49050000 N/C

Explanation:

q = Charge = 24 pC

m = Mass of honeybee = 0.12 g

E = Electric field = 100 N/C

g = Acceleration due to gravity = 9.81 m/s²

1\ C=6.25\times 10^{18}\ electrons

Number electrons is

n=24\times 10^{-12}\times 6.25\times 10^{18}\\\Rightarrow n=150000000

The number of electrons added or removed was 150000000

Force is given by

F_e=Eq\\\Rightarrow F_e=100\times 24\times 10^{-12}\\\Rightarrow F_e=2.4\times 10^{-9}\ N

The ratio is

\dfrac{F_e}{F_g}=\dfrac{2.4\times 10^{-9}}{0.12\times 10^{-3}\times 9.81}\\\Rightarrow \dfrac{F_e}{F_g}=0.00000203873598369

The ratio is \dfrac{F_e}{F_g}=0.00000203873598369

Balancing the forces we get

Eq=mg\\\Rightarrow E=\dfrac{mg}{q}\\\Rightarrow E=\dfrac{0.12\times 10^{-3}\times 9.81}{24\times 10^{-12}}\\\Rightarrow E=49050000\ N/C

The electric field required is 49050000 N/C

4 0
3 years ago
A hiker is at the bottom of a canyon facing the canyon wall closest to her. She is 280.5 meters from the wall and the sound of h
ValentinkaMS [17]

Answer:

4.80 seconds

Explanation:

The velocity of sound is obtained from;

V= 2d/t

Where;

V= velocity of sound = 329.2 ms-1

d= distance from the wall = 790.5 m

t= time = the unknown

t= 2d/V

t= 2 × 790.5/ 329.2

t= 4.80 seconds

8 0
3 years ago
Explain three ways you can get home safely, without getting behind the wheel, if there are drugs or alcohol in your system.
Ad libitum [116K]
Call your parent, call a local taxi ,or a sober friend
4 0
2 years ago
A cubic sample of a new kind of artificial tissue is subject to an increase in pressure of 160 kPa which results in a reduction
grin007 [14]

Answer:

0.82 MPa

Explanation:

the change in pressure 'σ'=160kPa

K= σ/∈Ф_v => σ/3∈Ф_L

K= 160/(3 x 0.065)

K=820 kPA=0.82 MPa

Thus,the bulk modulus of the tissue 'K' is 0.82 MPa

3 0
2 years ago
Other questions:
  • In the absence of air, why does the horizontal component of velocity for a projectile remain constant while the vertical compone
    15·1 answer
  • A system consists of two charges,
    9·1 answer
  • A person on a merry go round is constantly accerating toward the center
    10·2 answers
  • A 2.0-cm-thick bar of soap is floating on a water surface
    10·1 answer
  • On a cold day (0C) you observe a person far away from you hit a piece of metal with a hammer. Then 0.75 seconds later you hear
    11·1 answer
  • A converging lens focuses a set of light rays entering the lens on one side parallel to its axis to a single focal point on the
    10·1 answer
  • HELP PLZZZZZ NOW!!!
    12·2 answers
  • Light of wavelength 650 nm is normally incident on the rear of a grating. The first bright fringe (other than the central one) i
    9·1 answer
  • Why is the pendulum a good example of simple harmonic motion? Under what conditions the pendulum could not be used as a good exa
    11·1 answer
  • what happens to the frequency the centripetal force on an object in circular motion is doubled while the object keeps the same r
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!