<u>
Answer
</u>
The impulse on the second trial is smaller is smaller than in the first trial.
<u>Explanation
</u>
Impose of a body is that change in momentum during a time interval. If the change of momentum takes longer then, the impulse of a force is less. I a moving object hits a hard surface the rate of change of momentum is very high. e.i in the first trial, the egg breaks because it hits the hard surface(ground).
In the second trial, the foam cushion absorbs the shock and prolongs the time of impact with the egg hence decreasing the impulse.
Answer:
4.7 N
Explanation:
130 g = 0.13 kg
The momentum of the snowball when it's thrown at the wall is

Which is also the impulse. From here we can calculate the magnitude of the average force F knowing the duration of the collision is 0.18 s



Answer: 996m/s
Explanation:
Formula for calculating velocity of wave in a stretched string is
V = √T/M where;
V is the velocity of wave
T is tension
M is the mass per unit length of the wire(m/L)
Since the second wire is twice as far apart as the first, it will be L2 = 2L1
Let V1 and V2 be the speed of the shorter and longer wire respectively
V1 = √T/M1... 1
V2 = √T/M2... 2
Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1
The equations will now become
249 = √T/(m/L1) ... 3
V2 = √T/(m/2L1)... 4
From 3,
249² = TL1/m...5
From 4,
V2²= 2TL1/m... 6
Dividing equation 5 by 6 we have;
249²/V2² = TL1/m×m/2TL1
{249/V2}² = 1/2
249/V2 = (1/2)²
249/V2 = 1/4
V2 = 249×4
V2 = 996m/s
Therefore the speed of the wave on the longer wire is 996m/s
<span>When two objects collide their momentum after the collision is explained by</span> the conservation of momentum