For balancing the lever, force on both the sides shall be equal. so,
Force on 3 m end = m × a = 3 × 98.1 = 294.3
Now, on 6 m end, it would be: = 294.3/6 = 49.05
After rounding-off to the nearest hundredth value, it would be: 49 N
Finally, Option A would be your correct answer.
Hope this helps!
Answer:
Option D
490 J
Explanation:
When at a height of 100 am above and released, the ball initially posses only potential energy. When it falls, some potential energy is converted to kinetic energy.
Initial potential energy= mgh where m is the mass, g is the acceleration due to gravity and h is height. Substituting 1 Kg for m, 9.81 for g and 100 m for h then
PE initial = 1*9.81*100= 981 J
At 50 m, PE will be 1*9.81*50=490.5 J
Subtracting PE at 50 m from initial PE we get the energy that has been converted to kinetic energy hence
981-490.5= 490.5 J
Approximately, 490 J
Activation Energy is the amount of energy needed to get a reaction started.
C-Non-metals. There are tons of them.
Answer:
The horizontal component of the vector ≈ -16.06
The vertical component of the vector ≈ 19.15
Explanation:
The magnitude of the vector,
= 25 units
The direction of the vector, θ = 130°
Therefore, we have;
The horizontal component of the vector, Rₓ =
× cos(θ)
∴ Rₓ = 25 × cos(130°) ≈ -16.06
<em>The horizontal component of the vector, Rₓ ≈ -16.06</em>
The vertical component of the vector, R
=
× sin(θ)
∴ R
= 25 × sin(130°) ≈ 19.15
<em>The vertical component of the vector, R</em>
<em> ≈ 19.15</em>
(The vector, R = Rₓ + R
= Rₓ·i + R
·j
∴
≈ -16.07·i + 19.15j)