Answer:
Angle: 
Explanation:
<u>Two-Dimension Motion</u>
When the object is moving in one plane, the velocity, acceleration, and displacement are vectors. Apart from the magnitudes, we also need to find the direction, often expressed as an angle respect to some reference.
Our boy can swim at 3 m/s from west to east in still water and the river he's attempting to cross interacts with him at 2 m/s southwards. The boy will move east and south and will reach the other shore at a certain distance to the south from where he started. It happens because there is a vertical component of his velocity that is not compensated.
To compensate for the vertical component of the boy's speed, he only has to swim at a certain angle east of the north (respect to the shoreline). The goal is to make the boy's y component of his velocity equal to the velocity of the river. The vertical component of the boy's velocity is

where
is the speed of the boy in still water and
is the angle respect to the shoreline. If the river flows at speed
, we now set



Let F1=Force exerted by the brother (+F1)
F1= Force exerted by the sister (-F2)
Fnet=(+F1) + (-F2)
Fnet= (+F1) + (-F2)
Fnet=F1 - F2
Fnet= (+3N)+(-5N)
Fnet= -2N
-F
towards the sister (-F) (greater force applied)
a substance's density is the same at a certain pressure and temperature, and the density of one substance is usually different than another substance.
Answer:
32s
Explanation:
We must establish that by the time the police car catches up to the speeder, both have travelled a certain distance during the same amount of time. However, the police car experiences accelerated motion whereas the speeder travels at a constant velocity. Therefore we will establish two formulas for distance starting with the speeder's distance:

and the police car distance:

Since they both travel the same distance x, we can equal both formulas and solve for t:

Two solutions exist to the equation; the first one being 
The second solution will be:

This result allows us to confirm that the police car will take 32s to catch up to the speeder