An alkyne contains four carbon atoms.... so if you do 26 multiplied by 4 it equals 104... I do not know if that’s the answer so I apologize if it’s wrong :,)
Answer: 1. C. polar covalent: electrons shared between silicon and sulfur but attracted more to the sulfur
2. B) 
3. B) Fluorine
Explanation:
1. A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms.
Electronegativity difference = electronegativity of sulphur- electronegativity of silicon = 2.5 -1.8 = 0.7
Thus as electronegativity difference is less than 1.7 , the cond is polar covalent and as electronegativity of sulphur is more , the electrons will be more towards sulphur.
2. A molecular compound is usually composed of two or more nonmetal elements. Example:
Ionic compound is formed by the transfer of electrons from metals to non metals. Example:
,
and 
3. For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here K is having an oxidation state of +1 and as the compound formed is KZ, the oxidation state of non metallic element Z should be -1. Thus the element Z is flourine which exists as diatomic gas 
I'm not understanding that much. but if i'm right the answer is <span>3.84 x 10^-19 J</span>
Answer:
Because it went through a chemical change which changes its atomic form
<h2>Answer:</h2>
The density of mercury molecule is higher than water.
<h3>Explanation:</h3>
Density is defined as mass per unit volume.In other words, density is the amount of matter within a given amount of space. water has the density of 1.0 gram per milliliter whereas the mercury has a density of 13.6 grams per centimeter squared.
One reason for the differences in density between mercury and water is that the atomic mass of mercury is 200.59 grams per mole. The atomic mass of water is 18.0 grams per mole. This is because mercury has a larger nucleus than hydrogen or water.
Additionally, there are strong inter-molecular forces (hydrogen bonds) between water molecules. hydrogen molecules do not stack upon one another as nicely as mercury atoms. Thus, there is additional empty spaces between the water molecules leading to its lower mass per volume(density)