Earth is smaller and have 1 moon so it rotates faster than jupiter and it have 6 moons
Also,earth is the earth is the earth and orbits the sun faster than jupiter the 7th
Answer:
the filling stops when the pressure of the pump equals the pressure of the interior air plus the pressure of the walls.
Explanation:
This exercise asks to describe the inflation situation of a spherical fultball.
Initially the balloon is deflated, therefore the internal pressure is equal to the pressure of the air outside, atmospheric pressure, when it begins to inflate the balloon with a pump this creates a pressure in the inlet valve and as it is greater than the pressure inside, the air enters it, this is repeated in each filling cycle, manual pump.
When the ball is full we have two forces, the one created by the external walls and the one aired by the pressure of the pump, these forces are directed towards the inside, but the air molecules exert a pressure towards the outside, which translates into a force. When these two forces are equal, the pump is no longer able to continue introducing air into the balloon.
Consequently the filling stops when the pressure of the pump equals the pressure of the interior air plus the pressure of the walls.
Your diagram should include four forces:
• the box's weight, pointing down (magnitude <em>w</em> = 43.2 N)
• the normal force, pointing up (mag. <em>n</em>)
• the applied force, pointing the direction in which the box is sliding (mag. <em>p</em> = 6.30 N, with <em>p</em> for "pull")
• the frictional force, pointing oppoiste the applied force (mag. <em>f</em> )
The box is moving at a constant speed, so it is inequilibrium and the net forces in both the vertical and horizontal directions sum to 0. By Newton's second law, we have
<em>n</em> + (-<em>w</em>) = 0
and
<em>p</em> + (-<em>f</em> ) = 0
So then the forces have magnitudes
<em>w</em> = 43.2 N
<em>n</em> = <em>w</em> = 43.2 N
<em>p</em> = 6.30 N
<em>f</em> = <em>p</em> = 6.30 N
Answer:
Their final relative velocity is 0.190 m/s
Explanation:
The relative velocity of the satellites, v = 0.190 m/s
The mass of the first satellite, m₁ = 4.00 × 10³ kg
The mass of the second satellite, m₂ = 7.50 × 10³ kg
Given that the satellites have elastic collision, we have;


Given that the initial velocities are equal in magnitude, we have;
u₁ = u₂ = v/2
u₁ = u₂ = 0.190 m/s/2 = 0.095 m/s
v₁ and v₂ = The final velocities of the satellites
We get;


The final relative velocity of the satellite,
= v₁ + v₂
∴
= 0.095 + 0.095 = 0.190
The final relative velocity of the satellite,
= 0.190 m/s