Answer:2.5s
Explanation:
Idk I guessed and got it right
Answer:
v (minimum speed) = 2.90 m/sec.

Maximum value of speed will occur at lowest point of vertical circle.
Explanation:
a) What minimum speed is necessary so that there is no tension in the string at the top of the circle but the rock stays in the same circular path?
Using the force balance expression at the top of the circle,
Gravitational Force + Tension force = Centrifugal force

Given that : T = 0
R = length of string = 0.86 m
mass of the spinning rock = 0.75 kg


v (minimum speed) = 2.90 m/sec.
b) what is the maximum speed the rock can have so that the string does not break?
Here the force balance at bottom of circle is represented by the illustration:

Given that:
maximum tension T = 45 N
maximum speed v = ??
mass m = 0.75 kg
∴

c)
At what point in the vertical circle does this maximum value occur?
Maximum value of speed will occur at lowest point of vertical circle.
This is so because at the lowest point; the tension in string will be maximum.
Answer:
649kg/m^3
Explanation:
Let p be the density of this particular object.
Formula for density:

We can substitute the givenmass and volume to find density of the object.

Therefore the density of this object is 649kg/m^3.
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Explanation:
I'd love to but we cant talk right now cause its 12:22 am here and I'm gonna sleep now lol.
but let's follow each other.
who knows we might be able to help each other.
whaddya say?
have a good day ♡