Answer:
Heat required to melt 1 lb of ice is 151.469 KJ
Explanation:
We have given mass of ice = 1 lb
We know that 1 lb = 0.4535 kg
Latent heat of fusion for ice =334 KJ/kg
Amount if heat for fusion of ice is given by
, here m is mass of ice and L is latent heat of fusion
So heat 
So heat required to melt 1 lb of ice is equal to 151.469 KJ
Answer:
0.21486 mm
Explanation:
The formula for the maximum intensity is given by;
I = I_o•cos²(Φ/2)
Now,we are not given Φ but it can be expressed in terms of what we are given as; Φ = πdy/(λL)
Where;
y is the distance from the central maximum
d is the distance between the slits
λ is the wavelength
L is the distance to the screen
Thus;
I = I_o•πdy/(λL)
We are given;
d = 0.05 mm = 0.5 × 10^(-3) m
λ = 540 nm = 540 × 10^(-9) m
L = 1.25 m
I/I_o = 50% = 0.5
From earlier, we saw that;
I = I_o•πdy/(λL)
We have I/I_o = 0.5
Thus;
I/I_o = πdy/(λL)
Plugging in the relevant values;
0.5 = (π × 0.5 × 10^(-3) × y)/(540 × 10^(-9) × 1.25)
Making y the subject, we have;
y = (0.5 × 540 × 10^(-9) × 1.25)/(π × 0.5 × 10^(-3))
y = 0.00021486 m
Converting to mm, we have;
y = 0.21486 mm
The correct answer to the question is : 
EXPLANATION :
As per the question, the specific heat of gold is given as c = 
The heat given to the gold dQ = 195 J
The mass of the gold is given as m = 15 gram.
We are asked to calculate the change in temperature.
Let the change in temperature is dT.
We know that dQ = mcdT

[ANS]
Hence, the change in temperature is 100 degree celsius.
Answer:
a) 
b) 
Explanation:
Let's find the radius of the circumference first. We know that bob follows a circular path of circumference 0.94 m, it means that the perimeter is 0.94 m.
The perimeter of a circunference is:


Now, we need to find the angle of the pendulum from vertical.


Let's apply Newton's second law to find the tension.

We use centripetal acceleration here, because we have a circular motion.
The vertical equation of motion will be:
(1)
The horizontal equation of motion will be:
(2)
a) We can find T usinf the equation (1):

We can find the angular velocity (ω) from the equation (2):

b) We know that the period is T=2π/ω, therefore:

I hope it helps you!
Answer:
The sound travels differently in different medium according the density of the medium.
Explanation:
The sound travels faster in dense medium and can be heard by the vibration of the bone present in the ear. The ear plugs reduce the sound intensity in both medium water and on land (air).
In air the sound is not heard properly due to the earplugs that stops the as the vibration are not able to produce as sound is not able to reach to middle ear, but Navy researchers have discovered that sound under water is heard by the bone present behind the ear, vibrations mastoid.