Answer:
The speed of the electron is 1.371 x 10⁶ m/s.
Explanation:
Given;
wavelength of the ultraviolet light beam, λ = 130 nm = 130 x 10⁻⁹ m
the work function of the molybdenum surface, W₀ = 4.2 eV = 6.728 x 10⁻¹⁹ J
The energy of the incident light is given by;
E = hf
where;
h is Planck's constant = 6.626 x 10⁻³⁴ J/s
f = c / λ
![E = \frac{hc}{\lambda} \\\\E = \frac{6.626*10^{-34} *3*10^{8}}{130*10^{-9}} \\\\E = 15.291*10^{-19} \ J](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7Bhc%7D%7B%5Clambda%7D%20%5C%5C%5C%5CE%20%3D%20%5Cfrac%7B6.626%2A10%5E%7B-34%7D%20%2A3%2A10%5E%7B8%7D%7D%7B130%2A10%5E%7B-9%7D%7D%20%5C%5C%5C%5CE%20%3D%2015.291%2A10%5E%7B-19%7D%20%5C%20J)
Photo electric effect equation is given by;
E = W₀ + K.E
Where;
K.E is the kinetic energy of the emitted electron
K.E = E - W₀
K.E = 15.291 x 10⁻¹⁹ J - 6.728 x 10⁻¹⁹ J
K.E = 8.563 x 10⁻¹⁹ J
Kinetic energy of the emitted electron is given by;
K.E = ¹/₂mv²
where;
m is mass of the electron = 9.11 x 10⁻³¹ kg
v is the speed of the electron
![v = \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2*8.563*10^{-19}}{9.11*10^{-31}}}\\\\v = 1.371 *10^{6} \ m/s](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2K.E%7D%7Bm%7D%20%7D%20%5C%5C%5C%5Cv%20%3D%20%20%5Csqrt%7B%5Cfrac%7B2%2A8.563%2A10%5E%7B-19%7D%7D%7B9.11%2A10%5E%7B-31%7D%7D%7D%5C%5C%5C%5Cv%20%3D%201.371%20%2A10%5E%7B6%7D%20%5C%20m%2Fs)
Therefore, the speed of the electron is 1.371 x 10⁶ m/s.