Answer:
xaubUajnaai ajn AJ au aun a
Explanation:
ahayba uabah an aj
Answer:
The magnetic field strength inside the solenoid is
.
Explanation:
Given that,
Radius = 2.0 mm
Length = 5.0 cm
Current = 2.0 A
Number of turns = 100
(a). We need to calculate the magnetic field strength inside the solenoid
Using formula of the magnetic field strength
Using Ampere's Law

Where, N = Number of turns
I = current
l = length
Put the value into the formula


(b). We draw the diagram
Hence, The magnetic field strength inside the solenoid is
.
Answer:
p = mv
m = p/v = 125000/22 = 5682 kg
Explanation:
Direct application of the momentum equation
p = mv
where,
p: momentum
m: mass
v: object velocity
steps:
-------
1) check for units consistency ( SI or Imperial)
2) separate the variable you are looking for.
3) DONE! :DD
Answer:
τ=0.060 N.m
Explanation:
By kinematics:

Solving for α:

where ωo = 600*2*π/60; ωf = 0; t=10s

The sum of torque is:



Answer:
F = 100 Newtons
Explanation:
F = ?
m = 0.04kg
u = 0m/s ==> u is just an abbreviation for initial velocity, it is conventional.
s = 50m ==> s is just an abbreviation for distance, it is conventional.
v = 500m/s ==> v is just an abbreviation for final velocity, it is conventional.

Then F = ma = 0.04 x 2500 = 100N