This question involves the concepts of equilibrium and Newton's third law of motion.
The support force will be "1 pound" for the empty bucket and the support force will be "6 pounds" after pouring water into it.
- According to the condition of equilibrium, the sum of forces acting on a stationary object must be zero. Hence, the support force of the table will be equal to the total mass of the bucket.
- According to Newton's Third Law of Motion every action force has an equal but opposite reaction force. Hence, the support force will be a reaction force to the weight of the bucket.
Therefore, the support force in each case will be equal to the total mass of the bucket:
Case 1 (empty bucket):
<u>support force = 1 pound</u>
<u></u>
Case 1 (water poured):
support force = 1 pound + 5 pound
<u>support force = 6 pound</u>
<u></u>
Learn more about equilibrium here:
brainly.com/question/9076091
<em>Another key factor that determines a star's colour is its temperature. As stars become hotter, the overall radiated energy increases, and the peak of the curve changes to shorter wavelengths. To put it another way, when a star heats up, the light it produces moves toward the blue end of the spectrum.</em>
Answer:
If it had more or less mass, the atmosphere would be very different with either too much ammonia and methane or too little oxygen and water
Explanation:
When two or more waves meet, they interact with each other. The interaction of waves with other waves is called wave interference. Wave interference may occur when two waves that are traveling in opposite directions meet. The two waves pass through each other, and this affects their amplitude.
Answer:
B. 
Explanation:
Assuming we are dealing with a perfect gas, we should use the perfect gas equation:

With T the temperature, V the volume, P the pressure, R the perfect gas constant and n the number of mol, we are going to use the subscripts i for the initial state when the gas has 20 cubic inches of volume and absolute pressure of 5 psi, and final state when the gas reaches 10 psi, so we have two equations:
(1)
(2)
Assuming the temperature and the number of moles remain constant (number of moles remain constant if we don't have a leak of gas) we should equate equations (1) and (2) because
,
and R is an universal constant:
, solving for 

