Answer:
s = 3 m
Explanation:
Let t be the time the accelerating car starts.
Let's assume the vehicles are point masses so that "passing" takes no time.
the position of the constant velocity and accelerating vehicles are
s = vt = 40(t + 2) cm
s = ½at² = ½(20)(t)² cm
they pass when their distance is the same
½(20)(t)² = 40(t + 2)
10t² = 40t + 80
0 = 10t² - 40t - 80
0 = t² - 4t - 8
t = (4±√(4² - 4(1)(-8))) / 2(1)
t = (4± 6.928) / 2 ignore the negative time as it has not occurred yet.
t = 5.464 s
s = 40(5.464 + 2) = 298.564 cm
300 cm when rounded to the single significant digit of the question numerals.
Answer:
Av = 25 [m/s]
Explanation:
To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

where:
Av = speed [km/h] or [m/s]
distance = 180 [km]
time = 2 [hr]
Therefore the speed is equal to:
![Av = \frac{180}{2} \\Av = 90 [km/h]](https://tex.z-dn.net/?f=Av%20%3D%20%5Cfrac%7B180%7D%7B2%7D%20%5C%5CAv%20%3D%2090%20%5Bkm%2Fh%5D)
Now we must convert from kilometers per hour to meters per second
![90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]](https://tex.z-dn.net/?f=90%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A1000%5B%5Cfrac%7Bm%7D%7B1km%7D%5D%2A1%5B%5Cfrac%7Bh%7D%7B3600s%7D%20%5D%3D%2025%20%5Bm%2Fs%5D)
When object travels with uniform velocity, no force acts on it. hence , yes.
Answer:
The answer is 39.
Explanation:
The atomic number refers to the number of protons and the atomic mass is the sum of the protons and neutrons. So, you would just do 70 - 31 and that gets you 39.
Answer:
a) E = -4 10² N / C
, b) x = 0.093 m, c) a = 10.31 m / s², θ=-71.9⁰
Explanation:
For that exercise we use Newton's second Law, in the attached we can see a free body diagram of the ball
X axis
-
= m a
Axis y
- W = 0
Initially the system is in equilibrium, so zero acceleration
Fe =
T_{y} = W
Let us search with trigonometry the components of the tendency
cos θ = T_{y} / T
sin θ =
/ T
T_{y} = cos θ
= T sin θ
We replace
q E = T sin θ
mg = T cosθ
a) the electric force is
= q E
E =
/ q
E = -0.032 / 80 10⁻⁶
E = -4 10² N / C
b) the distance to this point can be found by dividing the two equations
q E / mg = tan θ
θ = tan⁻¹ qE / mg
Let's calculate
θ = tan⁻¹ (80 10⁻⁶ 4 10² / 0.01 9.8)
θ = tan⁻¹ 0.3265
θ = 18
⁰
sin 18 = x/0.30
x =0.30 sin 18
x = 0.093 m
c) The rope is cut, two forces remain acting on the ball, on the x-axis the electric force and on the axis and the force gravitations
X axis
= m aₓ
aₓ = q E / m
aₓ = 80 10⁻⁶ 4 10² / 0.01
aₓ = 3.2 m / s²
Axis y
W = m
a_{y} = g
a_{y} = 9.8 m/s²
The total acceleration is can be found using Pythagoras' theorem
a = √ aₓ² + a_{y}²
a = √ 3.2² + 9.8²
a = 10.31 m / s²
The Angle meet him with trigonometry
tan θ = a_{y} / aₓ
θ = tan⁻¹ a_{y} / aₓ
θ = tan⁻¹ (-9.8) / 3.2
θ = -71.9⁰
Movement is two-dimensional type with acceleration in both axes