I believe that the statement is true. <span>Investigations allow for the control of variables. Changing variables will lead you to observations that may prove your hypothesis. Hope this answers the question. Have a nice day. Please feel free to ask more questions.</span>
Answer:
The value is 
Explanation:
From the question we are told that
The velocity which the rover is suppose to land with is
The mass of the rover and the parachute is
The drag coefficient is
The atmospheric density of Earth is 
The acceleration due to gravity in Mars is 
Generally the Mars atmosphere density is mathematically represented as

=> 
=> 
Generally the drag force on the rover and the parachute is mathematically represented as

=>
=>
Gnerally this drag force is mathematically represented as

Here A is the frontal area
So

=> 
=> 
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3
Anthropology. It focuses on human behavior.
Answer:
x = 0.6034 m
Explanation:
Given
L = 5 m
Wplank = 225 N
Wman = 522 N
d = 1.1 m
x = ?
We have to take sum of torques about the right support point. If the board is just about to tip, the normal force from the left support will be going to zero. So the only torques come from the weight of the plank and the weight of the man.
∑τ = 0 ⇒ τ₁ + τ₂ = 0
Torque come from the weight of the plank = τ₁
Torque come from the weight of the man = τ₂
⇒ τ₁ = + (5 - 1.1)*(225/5)*((5 - 1.1)/2) - (1.1)*(225/5)*((1.1)/2) = 315 N-m (counterclockwise)
⇒ τ₂ = Wman*x = 522 N*x (clockwise)
then
τ₁ + τ₂ = (315 N-m) + (- 522 N*x) = 0
⇒ x = 0.6034 m